k -Wall-Sun-Sun质数的一个新条件

IF 0.6 4区 数学 Q3 MATHEMATICS
Lenny Jones
{"title":"k -Wall-Sun-Sun质数的一个新条件","authors":"Lenny Jones","doi":"10.11650/tjm/231003","DOIUrl":null,"url":null,"abstract":"Let $k \\geq 1$ be an integer, and let $(U_{n})$ be the Lucas sequence of the first kind defined by \\[ U_{0} = 0, \\quad U_{1} = 1 \\quad \\textrm{and} \\quad U_{n} = kU_{n-1} + U_{n-2} \\quad \\textrm{for $n \\geq 2$}. \\] It is well known that $(U_{n})$ is periodic modulo any integer $m \\geq 2$, and we let $\\pi(m)$ denote the length of this period. A prime $p$ is called a $k$-Wall–Sun–Sun prime if $\\pi(p^{2}) = \\pi(p)$. Let $f(x) \\in \\mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\\mathbb{Q}$. We say $f(x)$ is monogenic if $\\Theta = \\{ 1, \\theta, \\theta^{2}, \\ldots, \\theta^{N-1} \\}$ is a basis for the ring of integers $\\mathbb{Z}_{K}$ of $K = \\mathbb{Q}(\\theta)$, where $f(\\theta) = 0$. If $\\Theta$ is not a basis for $\\mathbb{Z}_{K}$, we say that $f(x)$ is non-monogenic. Suppose that $k \\not\\equiv 0 \\pmod{4}$ and that $\\mathcal{D} := (k^{2}+4)/\\gcd(2,k)^{2}$ is squarefree. We prove that $p$ is a $k$-Wall–Sun–Sun prime if and only if $\\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$ is non-monogenic. Furthermore, if $p$ is a prime divisor of $k^{2}+4$, then $\\mathcal{F}_{p}(x)$ is monogenic.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Condition for $k$-Wall–Sun–Sun Primes\",\"authors\":\"Lenny Jones\",\"doi\":\"10.11650/tjm/231003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k \\\\geq 1$ be an integer, and let $(U_{n})$ be the Lucas sequence of the first kind defined by \\\\[ U_{0} = 0, \\\\quad U_{1} = 1 \\\\quad \\\\textrm{and} \\\\quad U_{n} = kU_{n-1} + U_{n-2} \\\\quad \\\\textrm{for $n \\\\geq 2$}. \\\\] It is well known that $(U_{n})$ is periodic modulo any integer $m \\\\geq 2$, and we let $\\\\pi(m)$ denote the length of this period. A prime $p$ is called a $k$-Wall–Sun–Sun prime if $\\\\pi(p^{2}) = \\\\pi(p)$. Let $f(x) \\\\in \\\\mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\\\\mathbb{Q}$. We say $f(x)$ is monogenic if $\\\\Theta = \\\\{ 1, \\\\theta, \\\\theta^{2}, \\\\ldots, \\\\theta^{N-1} \\\\}$ is a basis for the ring of integers $\\\\mathbb{Z}_{K}$ of $K = \\\\mathbb{Q}(\\\\theta)$, where $f(\\\\theta) = 0$. If $\\\\Theta$ is not a basis for $\\\\mathbb{Z}_{K}$, we say that $f(x)$ is non-monogenic. Suppose that $k \\\\not\\\\equiv 0 \\\\pmod{4}$ and that $\\\\mathcal{D} := (k^{2}+4)/\\\\gcd(2,k)^{2}$ is squarefree. We prove that $p$ is a $k$-Wall–Sun–Sun prime if and only if $\\\\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$ is non-monogenic. Furthermore, if $p$ is a prime divisor of $k^{2}+4$, then $\\\\mathcal{F}_{p}(x)$ is monogenic.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/231003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/231003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$k \geq 1$为整数,$(U_{n})$为\[ U_{0} = 0, \quad U_{1} = 1 \quad \textrm{and} \quad U_{n} = kU_{n-1} + U_{n-2} \quad \textrm{for $n \geq 2$}. \]定义的第一类Lucas序列。众所周知,$(U_{n})$是对任意整数$m \geq 2$的周期模,我们设$\pi(m)$表示这个周期的长度。质数$p$被称为$k$ -Wall-Sun-Sun质数如果$\pi(p^{2}) = \pi(p)$。设$f(x) \in \mathbb{Z}[x]$为次为$N$的一元多项式,在$\mathbb{Q}$上不可约。如果$\Theta = \{ 1, \theta, \theta^{2}, \ldots, \theta^{N-1} \}$是$K = \mathbb{Q}(\theta)$的整数环$\mathbb{Z}_{K}$的基,我们说$f(x)$是单基因的,其中$f(\theta) = 0$。如果$\Theta$不是$\mathbb{Z}_{K}$的基础,我们说$f(x)$是非单基因的。假设$k \not\equiv 0 \pmod{4}$和$\mathcal{D} := (k^{2}+4)/\gcd(2,k)^{2}$是无平方的。我们证明$p$是一个$k$ -Wall-Sun-Sun素数当且仅当$\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$是非单基因的。此外,如果$p$是$k^{2}+4$的素数因子,那么$\mathcal{F}_{p}(x)$是单基因的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Condition for $k$-Wall–Sun–Sun Primes
Let $k \geq 1$ be an integer, and let $(U_{n})$ be the Lucas sequence of the first kind defined by \[ U_{0} = 0, \quad U_{1} = 1 \quad \textrm{and} \quad U_{n} = kU_{n-1} + U_{n-2} \quad \textrm{for $n \geq 2$}. \] It is well known that $(U_{n})$ is periodic modulo any integer $m \geq 2$, and we let $\pi(m)$ denote the length of this period. A prime $p$ is called a $k$-Wall–Sun–Sun prime if $\pi(p^{2}) = \pi(p)$. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\mathbb{Q}$. We say $f(x)$ is monogenic if $\Theta = \{ 1, \theta, \theta^{2}, \ldots, \theta^{N-1} \}$ is a basis for the ring of integers $\mathbb{Z}_{K}$ of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$. If $\Theta$ is not a basis for $\mathbb{Z}_{K}$, we say that $f(x)$ is non-monogenic. Suppose that $k \not\equiv 0 \pmod{4}$ and that $\mathcal{D} := (k^{2}+4)/\gcd(2,k)^{2}$ is squarefree. We prove that $p$ is a $k$-Wall–Sun–Sun prime if and only if $\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$ is non-monogenic. Furthermore, if $p$ is a prime divisor of $k^{2}+4$, then $\mathcal{F}_{p}(x)$ is monogenic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信