k -Wall-Sun-Sun质数的一个新条件

Pub Date : 2023-01-01 DOI:10.11650/tjm/231003
Lenny Jones
{"title":"k -Wall-Sun-Sun质数的一个新条件","authors":"Lenny Jones","doi":"10.11650/tjm/231003","DOIUrl":null,"url":null,"abstract":"Let $k \\geq 1$ be an integer, and let $(U_{n})$ be the Lucas sequence of the first kind defined by \\[ U_{0} = 0, \\quad U_{1} = 1 \\quad \\textrm{and} \\quad U_{n} = kU_{n-1} + U_{n-2} \\quad \\textrm{for $n \\geq 2$}. \\] It is well known that $(U_{n})$ is periodic modulo any integer $m \\geq 2$, and we let $\\pi(m)$ denote the length of this period. A prime $p$ is called a $k$-Wall–Sun–Sun prime if $\\pi(p^{2}) = \\pi(p)$. Let $f(x) \\in \\mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\\mathbb{Q}$. We say $f(x)$ is monogenic if $\\Theta = \\{ 1, \\theta, \\theta^{2}, \\ldots, \\theta^{N-1} \\}$ is a basis for the ring of integers $\\mathbb{Z}_{K}$ of $K = \\mathbb{Q}(\\theta)$, where $f(\\theta) = 0$. If $\\Theta$ is not a basis for $\\mathbb{Z}_{K}$, we say that $f(x)$ is non-monogenic. Suppose that $k \\not\\equiv 0 \\pmod{4}$ and that $\\mathcal{D} := (k^{2}+4)/\\gcd(2,k)^{2}$ is squarefree. We prove that $p$ is a $k$-Wall–Sun–Sun prime if and only if $\\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$ is non-monogenic. Furthermore, if $p$ is a prime divisor of $k^{2}+4$, then $\\mathcal{F}_{p}(x)$ is monogenic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Condition for $k$-Wall–Sun–Sun Primes\",\"authors\":\"Lenny Jones\",\"doi\":\"10.11650/tjm/231003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k \\\\geq 1$ be an integer, and let $(U_{n})$ be the Lucas sequence of the first kind defined by \\\\[ U_{0} = 0, \\\\quad U_{1} = 1 \\\\quad \\\\textrm{and} \\\\quad U_{n} = kU_{n-1} + U_{n-2} \\\\quad \\\\textrm{for $n \\\\geq 2$}. \\\\] It is well known that $(U_{n})$ is periodic modulo any integer $m \\\\geq 2$, and we let $\\\\pi(m)$ denote the length of this period. A prime $p$ is called a $k$-Wall–Sun–Sun prime if $\\\\pi(p^{2}) = \\\\pi(p)$. Let $f(x) \\\\in \\\\mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\\\\mathbb{Q}$. We say $f(x)$ is monogenic if $\\\\Theta = \\\\{ 1, \\\\theta, \\\\theta^{2}, \\\\ldots, \\\\theta^{N-1} \\\\}$ is a basis for the ring of integers $\\\\mathbb{Z}_{K}$ of $K = \\\\mathbb{Q}(\\\\theta)$, where $f(\\\\theta) = 0$. If $\\\\Theta$ is not a basis for $\\\\mathbb{Z}_{K}$, we say that $f(x)$ is non-monogenic. Suppose that $k \\\\not\\\\equiv 0 \\\\pmod{4}$ and that $\\\\mathcal{D} := (k^{2}+4)/\\\\gcd(2,k)^{2}$ is squarefree. We prove that $p$ is a $k$-Wall–Sun–Sun prime if and only if $\\\\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$ is non-monogenic. Furthermore, if $p$ is a prime divisor of $k^{2}+4$, then $\\\\mathcal{F}_{p}(x)$ is monogenic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/231003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/231003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$k \geq 1$为整数,$(U_{n})$为\[ U_{0} = 0, \quad U_{1} = 1 \quad \textrm{and} \quad U_{n} = kU_{n-1} + U_{n-2} \quad \textrm{for $n \geq 2$}. \]定义的第一类Lucas序列。众所周知,$(U_{n})$是对任意整数$m \geq 2$的周期模,我们设$\pi(m)$表示这个周期的长度。质数$p$被称为$k$ -Wall-Sun-Sun质数如果$\pi(p^{2}) = \pi(p)$。设$f(x) \in \mathbb{Z}[x]$为次为$N$的一元多项式,在$\mathbb{Q}$上不可约。如果$\Theta = \{ 1, \theta, \theta^{2}, \ldots, \theta^{N-1} \}$是$K = \mathbb{Q}(\theta)$的整数环$\mathbb{Z}_{K}$的基,我们说$f(x)$是单基因的,其中$f(\theta) = 0$。如果$\Theta$不是$\mathbb{Z}_{K}$的基础,我们说$f(x)$是非单基因的。假设$k \not\equiv 0 \pmod{4}$和$\mathcal{D} := (k^{2}+4)/\gcd(2,k)^{2}$是无平方的。我们证明$p$是一个$k$ -Wall-Sun-Sun素数当且仅当$\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$是非单基因的。此外,如果$p$是$k^{2}+4$的素数因子,那么$\mathcal{F}_{p}(x)$是单基因的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A New Condition for $k$-Wall–Sun–Sun Primes
Let $k \geq 1$ be an integer, and let $(U_{n})$ be the Lucas sequence of the first kind defined by \[ U_{0} = 0, \quad U_{1} = 1 \quad \textrm{and} \quad U_{n} = kU_{n-1} + U_{n-2} \quad \textrm{for $n \geq 2$}. \] It is well known that $(U_{n})$ is periodic modulo any integer $m \geq 2$, and we let $\pi(m)$ denote the length of this period. A prime $p$ is called a $k$-Wall–Sun–Sun prime if $\pi(p^{2}) = \pi(p)$. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\mathbb{Q}$. We say $f(x)$ is monogenic if $\Theta = \{ 1, \theta, \theta^{2}, \ldots, \theta^{N-1} \}$ is a basis for the ring of integers $\mathbb{Z}_{K}$ of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$. If $\Theta$ is not a basis for $\mathbb{Z}_{K}$, we say that $f(x)$ is non-monogenic. Suppose that $k \not\equiv 0 \pmod{4}$ and that $\mathcal{D} := (k^{2}+4)/\gcd(2,k)^{2}$ is squarefree. We prove that $p$ is a $k$-Wall–Sun–Sun prime if and only if $\mathcal{F}_{p}(x) = x^{2p}-kx^{p}-1$ is non-monogenic. Furthermore, if $p$ is a prime divisor of $k^{2}+4$, then $\mathcal{F}_{p}(x)$ is monogenic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信