{"title":"局部依赖下中心极限定理中的Wasserstein-p界","authors":"Tianle Liu, Morgane Austern","doi":"10.1214/23-ejp1009","DOIUrl":null,"url":null,"abstract":"The central limit theorem (CLT) is one of the most fundamental results in probability; and establishing its rate of convergence has been a key question since the 1940s. For independent random variables, a series of recent works established optimal error bounds under the Wasserstein-p distance (with p>=1). In this paper, we extend those results to locally dependent random variables, which include m-dependent random fields and U-statistics. Under conditions on the moments and the dependency neighborhoods, we derive optimal rates in the CLT for the Wasserstein-p distance. Our proofs rely on approximating the empirical average of dependent observations by the empirical average of i.i.d. random variables. To do so, we expand the Stein equation to arbitrary orders by adapting the Stein's dependency neighborhood method. Finally we illustrate the applicability of our results by obtaining efficient tail bounds.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":"4 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wasserstein-p bounds in the central limit theorem under local dependence\",\"authors\":\"Tianle Liu, Morgane Austern\",\"doi\":\"10.1214/23-ejp1009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The central limit theorem (CLT) is one of the most fundamental results in probability; and establishing its rate of convergence has been a key question since the 1940s. For independent random variables, a series of recent works established optimal error bounds under the Wasserstein-p distance (with p>=1). In this paper, we extend those results to locally dependent random variables, which include m-dependent random fields and U-statistics. Under conditions on the moments and the dependency neighborhoods, we derive optimal rates in the CLT for the Wasserstein-p distance. Our proofs rely on approximating the empirical average of dependent observations by the empirical average of i.i.d. random variables. To do so, we expand the Stein equation to arbitrary orders by adapting the Stein's dependency neighborhood method. Finally we illustrate the applicability of our results by obtaining efficient tail bounds.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp1009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejp1009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Wasserstein-p bounds in the central limit theorem under local dependence
The central limit theorem (CLT) is one of the most fundamental results in probability; and establishing its rate of convergence has been a key question since the 1940s. For independent random variables, a series of recent works established optimal error bounds under the Wasserstein-p distance (with p>=1). In this paper, we extend those results to locally dependent random variables, which include m-dependent random fields and U-statistics. Under conditions on the moments and the dependency neighborhoods, we derive optimal rates in the CLT for the Wasserstein-p distance. Our proofs rely on approximating the empirical average of dependent observations by the empirical average of i.i.d. random variables. To do so, we expand the Stein equation to arbitrary orders by adapting the Stein's dependency neighborhood method. Finally we illustrate the applicability of our results by obtaining efficient tail bounds.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.