{"title":"关于由x^{84}-m定义的纯数域的幂积分基","authors":"Lhoussain El Fadil, Omar Kchit, Hanan Choulli","doi":"10.33044/revuma.2836","DOIUrl":null,"url":null,"abstract":"Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{60}-m\\in \\mathbb{Z}[x]$, with $m\\neq \\pm1$ a square free integer. In this paper, we study the monogeneity of $K$. We prove that if $m\\not\\equiv 1\\md{4}$, $m\\not\\equiv \\mp 1 \\md{9} $ and $\\overline{m}\\not\\in\\{\\mp 1,\\mp 7\\} \\md{25}$, then $K$ is monogenic. But if $m\\equiv 1\\md{4}$, $m\\equiv \\mp1 \\md{9}$, or $m\\equiv \\mp 1\\md{25}$, then $K$ is not monogenic. Our results are illustrated by examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On power integral bases of certain pure number fields defined by $x^{84}-m$\",\"authors\":\"Lhoussain El Fadil, Omar Kchit, Hanan Choulli\",\"doi\":\"10.33044/revuma.2836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{60}-m\\\\in \\\\mathbb{Z}[x]$, with $m\\\\neq \\\\pm1$ a square free integer. In this paper, we study the monogeneity of $K$. We prove that if $m\\\\not\\\\equiv 1\\\\md{4}$, $m\\\\not\\\\equiv \\\\mp 1 \\\\md{9} $ and $\\\\overline{m}\\\\not\\\\in\\\\{\\\\mp 1,\\\\mp 7\\\\} \\\\md{25}$, then $K$ is monogenic. But if $m\\\\equiv 1\\\\md{4}$, $m\\\\equiv \\\\mp1 \\\\md{9}$, or $m\\\\equiv \\\\mp 1\\\\md{25}$, then $K$ is not monogenic. Our results are illustrated by examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.2836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.2836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On power integral bases of certain pure number fields defined by $x^{84}-m$
Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{60}-m\in \mathbb{Z}[x]$, with $m\neq \pm1$ a square free integer. In this paper, we study the monogeneity of $K$. We prove that if $m\not\equiv 1\md{4}$, $m\not\equiv \mp 1 \md{9} $ and $\overline{m}\not\in\{\mp 1,\mp 7\} \md{25}$, then $K$ is monogenic. But if $m\equiv 1\md{4}$, $m\equiv \mp1 \md{9}$, or $m\equiv \mp 1\md{25}$, then $K$ is not monogenic. Our results are illustrated by examples.