通过低拥塞捷径的几乎普遍最优的分布式拉普拉斯解

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, Themis Gouleakis
{"title":"通过低拥塞捷径的几乎普遍最优的分布式拉普拉斯解","authors":"Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, Themis Gouleakis","doi":"10.1007/s00446-023-00454-0","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n -node graph with shortcut quality $$\\textrm{SQ}(G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be solved after $$n^{o(1)} \\text {SQ}(G) \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where $$\\epsilon &gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires $$\\widetilde{\\Omega }(\\textrm{SQ}(G))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mover> <mml:mi>Ω</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mrow> <mml:mo>(</mml:mo> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, even for a crude solution with $$\\epsilon \\le 1/2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> . Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in $$D \\cdot n^{o(1)} \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where D is the hop-diameter of the network; as well as $$n^{o(1)} \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> -round algorithms for the case of $$\\textrm{SQ}(G) \\le n^{o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , which holds for most networks of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we show the existence of a Laplacian solver with round complexity $$n^{o(1)} \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . The unifying thread of these results, and our main technical contribution, is the development of near-optimal algorithms for a novel $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> - congested generalization of the standard part-wise aggregation problem, which could be of independent interest.","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"88 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts\",\"authors\":\"Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, Themis Gouleakis\",\"doi\":\"10.1007/s00446-023-00454-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n -node graph with shortcut quality $$\\\\textrm{SQ}(G)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be solved after $$n^{o(1)} \\\\text {SQ}(G) \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where $$\\\\epsilon &gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires $$\\\\widetilde{\\\\Omega }(\\\\textrm{SQ}(G))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mover> <mml:mi>Ω</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mrow> <mml:mo>(</mml:mo> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, even for a crude solution with $$\\\\epsilon \\\\le 1/2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> . Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in $$D \\\\cdot n^{o(1)} \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where D is the hop-diameter of the network; as well as $$n^{o(1)} \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> -round algorithms for the case of $$\\\\textrm{SQ}(G) \\\\le n^{o(1)}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , which holds for most networks of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we show the existence of a Laplacian solver with round complexity $$n^{o(1)} \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . The unifying thread of these results, and our main technical contribution, is the development of near-optimal algorithms for a novel $$\\\\rho $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ρ</mml:mi> </mml:math> - congested generalization of the standard part-wise aggregation problem, which could be of independent interest.\",\"PeriodicalId\":50569,\"journal\":{\"name\":\"Distributed Computing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00446-023-00454-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00446-023-00454-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

本文将Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ' 21)的(几乎)存在最优分布拉普拉斯求解器改进为(几乎)普遍最优分布拉普拉斯求解器。具体来说,当拓扑已知时(即支持的congest模型),我们证明了在具有快捷质量$$\textrm{SQ}(G)$$ SQ (G)的n节点图上的任何拉普拉斯系统都可以在$$n^{o(1)} \text {SQ}(G) \log (1/\epsilon )$$ no (1) SQ (G) log (1 / λ)轮之后求解,其中$$\epsilon >0$$ λ &gt;0是要求的精度。这几乎与我们的下界相匹配,下界保证任何正确的G算法都需要$$\widetilde{\Omega }(\textrm{SQ}(G))$$ Ω (SQ (G))轮数,即使对于$$\epsilon \le 1/2$$ λ≤1 / 2的粗糙解也是如此。在未知拓扑(即标准CONGEST)情况下,有几个重要的含义:对于排除次要图,我们得到了一个几乎普遍最优的算法,该算法终止于$$D \cdot n^{o(1)} \log (1/\epsilon )$$ D·no (1) log (1 / λ)轮,其中D是网络的跳直径;以及$$\textrm{SQ}(G) \le n^{o(1)}$$ SQ (G)≤n o(1)的情况下的$$n^{o(1)} \log (1/\epsilon )$$ n o (1) log (1 / λ) -round算法,它适用于大多数感兴趣的网络。此外,根据最近在分布式算法中的一系列工作,我们考虑了一种混合通信模型,该模型以节点容量团模型的形式增强了有限全局功率的CONGEST。在这个模型中,我们证明了具有循环复杂度$$n^{o(1)} \log (1/\epsilon )$$ n o (1) log (1 / λ)的拉普拉斯解算器的存在性。这些结果的统一线索,以及我们的主要技术贡献,是针对标准部分聚合问题的新颖$$\rho $$ ρ -拥塞泛化的近最优算法的开发,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts
Abstract In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n -node graph with shortcut quality $$\textrm{SQ}(G)$$ SQ ( G ) can be solved after $$n^{o(1)} \text {SQ}(G) \log (1/\epsilon )$$ n o ( 1 ) SQ ( G ) log ( 1 / ϵ ) rounds, where $$\epsilon >0$$ ϵ > 0 is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires $$\widetilde{\Omega }(\textrm{SQ}(G))$$ Ω ~ ( SQ ( G ) ) rounds, even for a crude solution with $$\epsilon \le 1/2$$ ϵ 1 / 2 . Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in $$D \cdot n^{o(1)} \log (1/\epsilon )$$ D · n o ( 1 ) log ( 1 / ϵ ) rounds, where D is the hop-diameter of the network; as well as $$n^{o(1)} \log (1/\epsilon )$$ n o ( 1 ) log ( 1 / ϵ ) -round algorithms for the case of $$\textrm{SQ}(G) \le n^{o(1)}$$ SQ ( G ) n o ( 1 ) , which holds for most networks of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we show the existence of a Laplacian solver with round complexity $$n^{o(1)} \log (1/\epsilon )$$ n o ( 1 ) log ( 1 / ϵ ) . The unifying thread of these results, and our main technical contribution, is the development of near-optimal algorithms for a novel $$\rho $$ ρ - congested generalization of the standard part-wise aggregation problem, which could be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Distributed Computing
Distributed Computing 工程技术-计算机:理论方法
CiteScore
3.20
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems. Topics covered by the journal include but are not limited to: design and analysis of distributed algorithms; multiprocessor and multi-core architectures and algorithms; synchronization protocols and concurrent programming; distributed operating systems and middleware; fault-tolerance, reliability and availability; architectures and protocols for communication networks and peer-to-peer systems; security in distributed computing, cryptographic protocols; mobile, sensor, and ad hoc networks; internet applications; concurrency theory; specification, semantics, verification, and testing of distributed systems. In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信