Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, Themis Gouleakis
{"title":"通过低拥塞捷径的几乎普遍最优的分布式拉普拉斯解","authors":"Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, Themis Gouleakis","doi":"10.1007/s00446-023-00454-0","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n -node graph with shortcut quality $$\\textrm{SQ}(G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be solved after $$n^{o(1)} \\text {SQ}(G) \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where $$\\epsilon >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires $$\\widetilde{\\Omega }(\\textrm{SQ}(G))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mover> <mml:mi>Ω</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mrow> <mml:mo>(</mml:mo> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, even for a crude solution with $$\\epsilon \\le 1/2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> . Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in $$D \\cdot n^{o(1)} \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where D is the hop-diameter of the network; as well as $$n^{o(1)} \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> -round algorithms for the case of $$\\textrm{SQ}(G) \\le n^{o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , which holds for most networks of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we show the existence of a Laplacian solver with round complexity $$n^{o(1)} \\log (1/\\epsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . The unifying thread of these results, and our main technical contribution, is the development of near-optimal algorithms for a novel $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> - congested generalization of the standard part-wise aggregation problem, which could be of independent interest.","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"88 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts\",\"authors\":\"Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, Themis Gouleakis\",\"doi\":\"10.1007/s00446-023-00454-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n -node graph with shortcut quality $$\\\\textrm{SQ}(G)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> can be solved after $$n^{o(1)} \\\\text {SQ}(G) \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where $$\\\\epsilon >0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires $$\\\\widetilde{\\\\Omega }(\\\\textrm{SQ}(G))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mover> <mml:mi>Ω</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mrow> <mml:mo>(</mml:mo> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, even for a crude solution with $$\\\\epsilon \\\\le 1/2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> . Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in $$D \\\\cdot n^{o(1)} \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> rounds, where D is the hop-diameter of the network; as well as $$n^{o(1)} \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> -round algorithms for the case of $$\\\\textrm{SQ}(G) \\\\le n^{o(1)}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>SQ</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , which holds for most networks of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we show the existence of a Laplacian solver with round complexity $$n^{o(1)} \\\\log (1/\\\\epsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . The unifying thread of these results, and our main technical contribution, is the development of near-optimal algorithms for a novel $$\\\\rho $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ρ</mml:mi> </mml:math> - congested generalization of the standard part-wise aggregation problem, which could be of independent interest.\",\"PeriodicalId\":50569,\"journal\":{\"name\":\"Distributed Computing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00446-023-00454-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00446-023-00454-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts
Abstract In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n -node graph with shortcut quality $$\textrm{SQ}(G)$$ SQ(G) can be solved after $$n^{o(1)} \text {SQ}(G) \log (1/\epsilon )$$ no(1)SQ(G)log(1/ϵ) rounds, where $$\epsilon >0$$ ϵ>0 is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires $$\widetilde{\Omega }(\textrm{SQ}(G))$$ Ω~(SQ(G)) rounds, even for a crude solution with $$\epsilon \le 1/2$$ ϵ≤1/2 . Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in $$D \cdot n^{o(1)} \log (1/\epsilon )$$ D·no(1)log(1/ϵ) rounds, where D is the hop-diameter of the network; as well as $$n^{o(1)} \log (1/\epsilon )$$ no(1)log(1/ϵ) -round algorithms for the case of $$\textrm{SQ}(G) \le n^{o(1)}$$ SQ(G)≤no(1) , which holds for most networks of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we show the existence of a Laplacian solver with round complexity $$n^{o(1)} \log (1/\epsilon )$$ no(1)log(1/ϵ) . The unifying thread of these results, and our main technical contribution, is the development of near-optimal algorithms for a novel $$\rho $$ ρ - congested generalization of the standard part-wise aggregation problem, which could be of independent interest.
期刊介绍:
The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems.
Topics covered by the journal include but are not limited to:
design and analysis of distributed algorithms;
multiprocessor and multi-core architectures and algorithms;
synchronization protocols and concurrent programming;
distributed operating systems and middleware;
fault-tolerance, reliability and availability;
architectures and protocols for communication networks and peer-to-peer systems;
security in distributed computing, cryptographic protocols;
mobile, sensor, and ad hoc networks;
internet applications;
concurrency theory;
specification, semantics, verification, and testing of distributed systems.
In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.