不完全接触条件下传热问题传热系数的恢复

Q4 Mathematics
S.G. Pyatkov, V.A. Belonogov
{"title":"不完全接触条件下传热问题传热系数的恢复","authors":"S.G. Pyatkov, V.A. Belonogov","doi":"10.47475/2500-0101-2023-8-3-331-350","DOIUrl":null,"url":null,"abstract":"We consider systems of parabolic equations and well-posedness questions in Sobolev spaces of inverse problems of recovering the heat transfer coefficients at the interface which are included in the transmission condition of the imperfect contact type. Under certain conditions on the data, it is demonstrated that there exists a unique solution to the problem. The proof employs a priori estimates and the fixed-point theorem.","PeriodicalId":36654,"journal":{"name":"Chelyabinsk Physical and Mathematical Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RECOVERING OF THE HEAT TRANSFER COEFFICIENT IN TRANSMISSION PROBLEMS WITH IMPERFECT CONTACT CONDITIONS\",\"authors\":\"S.G. Pyatkov, V.A. Belonogov\",\"doi\":\"10.47475/2500-0101-2023-8-3-331-350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider systems of parabolic equations and well-posedness questions in Sobolev spaces of inverse problems of recovering the heat transfer coefficients at the interface which are included in the transmission condition of the imperfect contact type. Under certain conditions on the data, it is demonstrated that there exists a unique solution to the problem. The proof employs a priori estimates and the fixed-point theorem.\",\"PeriodicalId\":36654,\"journal\":{\"name\":\"Chelyabinsk Physical and Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chelyabinsk Physical and Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47475/2500-0101-2023-8-3-331-350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chelyabinsk Physical and Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47475/2500-0101-2023-8-3-331-350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

考虑不完全接触型传热条件下的抛物型方程组和Sobolev空间中界面处传热系数反演问题的适定性问题。在数据的一定条件下,证明了问题存在唯一解。该证明采用了先验估计和不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECOVERING OF THE HEAT TRANSFER COEFFICIENT IN TRANSMISSION PROBLEMS WITH IMPERFECT CONTACT CONDITIONS
We consider systems of parabolic equations and well-posedness questions in Sobolev spaces of inverse problems of recovering the heat transfer coefficients at the interface which are included in the transmission condition of the imperfect contact type. Under certain conditions on the data, it is demonstrated that there exists a unique solution to the problem. The proof employs a priori estimates and the fixed-point theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chelyabinsk Physical and Mathematical Journal
Chelyabinsk Physical and Mathematical Journal Mathematics-Mathematics (all)
CiteScore
0.90
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信