度量图上具有分数阶导数的伪次扩散方程的ibvp的唯一可解性

Q4 Mathematics
Z.A. Sobirov, J.R. Khujakulov, A.A. Turemuratova
{"title":"度量图上具有分数阶导数的伪次扩散方程的ibvp的唯一可解性","authors":"Z.A. Sobirov, J.R. Khujakulov, A.A. Turemuratova","doi":"10.47475/2500-0101-2023-8-3-351-370","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.","PeriodicalId":36654,"journal":{"name":"Chelyabinsk Physical and Mathematical Journal","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVE ON A METRIC GRAPH\",\"authors\":\"Z.A. Sobirov, J.R. Khujakulov, A.A. Turemuratova\",\"doi\":\"10.47475/2500-0101-2023-8-3-351-370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.\",\"PeriodicalId\":36654,\"journal\":{\"name\":\"Chelyabinsk Physical and Mathematical Journal\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chelyabinsk Physical and Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47475/2500-0101-2023-8-3-351-370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chelyabinsk Physical and Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47475/2500-0101-2023-8-3-351-370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了度量图上含有Hilfer时间分数阶导数的伪次扩散方程的初边值问题。在图的边界点,我们使用狄利克雷条件。在图的分支点(内部顶点),我们使用δ型条件。这种条件保证了分支点处的局部通量守恒,也称为基尔霍夫条件。用所谓的能量积分法证明了所考虑问题解的唯一性。证明了所考虑问题正则解的存在性。解是用傅里叶级数的形式构造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVE ON A METRIC GRAPH
In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chelyabinsk Physical and Mathematical Journal
Chelyabinsk Physical and Mathematical Journal Mathematics-Mathematics (all)
CiteScore
0.90
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信