在社交媒体上检测抑郁症:对数据分析、深度学习、NLP和机器学习方法的全面回顾

None Tamanna Dhaker, None Aarju Kumar, None Dr. Abirami G
{"title":"在社交媒体上检测抑郁症:对数据分析、深度学习、NLP和机器学习方法的全面回顾","authors":"None Tamanna Dhaker, None Aarju Kumar, None Dr. Abirami G","doi":"10.32628/cseit2390510","DOIUrl":null,"url":null,"abstract":"Social media platforms are vast reservoirs of human sentiment and behavior, making them ripe for depression detection. This literature review delves into approaches for this detection using data analysis, deep learning, natural language processing (NLP), and machine learning (ML). We discuss data types used and explore deep learning techniques like CNN, RNN, and DNN, applied across platforms such as Facebook, Twitter, and Reddit. The review also highlights NLP's role and ML algorithms, notably SVM, Naive Bayes, K-Nearest Neighbour, Random Forest, and Decision Trees. We analyze depression causes, its link with social media, and variations across age and gender. This comprehensive study guides researchers and practitioners in technology-driven mental health solutions.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Depression on Social Media : A Comprehensive Review of Data Analysis, Deep Learning, NLP, and Machine Learning Approaches\",\"authors\":\"None Tamanna Dhaker, None Aarju Kumar, None Dr. Abirami G\",\"doi\":\"10.32628/cseit2390510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media platforms are vast reservoirs of human sentiment and behavior, making them ripe for depression detection. This literature review delves into approaches for this detection using data analysis, deep learning, natural language processing (NLP), and machine learning (ML). We discuss data types used and explore deep learning techniques like CNN, RNN, and DNN, applied across platforms such as Facebook, Twitter, and Reddit. The review also highlights NLP's role and ML algorithms, notably SVM, Naive Bayes, K-Nearest Neighbour, Random Forest, and Decision Trees. We analyze depression causes, its link with social media, and variations across age and gender. This comprehensive study guides researchers and practitioners in technology-driven mental health solutions.\",\"PeriodicalId\":313456,\"journal\":{\"name\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/cseit2390510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2390510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体平台是人类情感和行为的巨大储存库,因此发现抑郁症的时机已经成熟。这篇文献综述深入探讨了使用数据分析、深度学习、自然语言处理(NLP)和机器学习(ML)进行这种检测的方法。我们讨论了使用的数据类型,并探索了CNN、RNN和DNN等深度学习技术,这些技术应用于Facebook、Twitter和Reddit等平台。该综述还强调了NLP的作用和ML算法,特别是支持向量机,朴素贝叶斯,k近邻,随机森林和决策树。我们分析了抑郁症的原因,它与社交媒体的联系,以及年龄和性别之间的差异。这项全面的研究为技术驱动的心理健康解决方案的研究人员和从业者提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Depression on Social Media : A Comprehensive Review of Data Analysis, Deep Learning, NLP, and Machine Learning Approaches
Social media platforms are vast reservoirs of human sentiment and behavior, making them ripe for depression detection. This literature review delves into approaches for this detection using data analysis, deep learning, natural language processing (NLP), and machine learning (ML). We discuss data types used and explore deep learning techniques like CNN, RNN, and DNN, applied across platforms such as Facebook, Twitter, and Reddit. The review also highlights NLP's role and ML algorithms, notably SVM, Naive Bayes, K-Nearest Neighbour, Random Forest, and Decision Trees. We analyze depression causes, its link with social media, and variations across age and gender. This comprehensive study guides researchers and practitioners in technology-driven mental health solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信