{"title":"异步Fifo与内存一致性验证模糊刺激生成的实证研究","authors":"","doi":"10.33140/jeee.02.03.12","DOIUrl":null,"url":null,"abstract":"Focusing on the particularity of holiday load, in this paper, a periodic autoregressive moving average model (PAMAM) algorithm based on selecting optimal input features (SOIF) is proposed to predict the short-term holiday power load. In short-term load forecasting models, there are few researches on feature selection (FS). However, as more and more intelligent hybrid models are used in real-time load forecasting, FS has become a key factor affecting the forecasting accuracy. Based on the idea of SOIF, PAMAM model is proposed to improve the influence of FS factors, and the holiday equations are combined into periodic autoregressive moving average model, so as to improve the short-term forecasting. In order to simplify the calculation, in this paper, the probability distribution is used to calculate the FS, and the autoregressive spline algorithm is used to establish the nonlinear solar radiation and temperature effect model. Based on the statistics of solar radiation intensity, temperature and other data during the Spring Festival, in this paper we analyze the influence of the above factors on the short-term power load forecasting during holidays. Experimental results show that SOIF-PAMAM algorithm in which temperature and other weather conditions are considered can significantly improve the prediction accuracy, the average absolute error is 2.45%, and the root mean square error is 2.61%.","PeriodicalId":39047,"journal":{"name":"Journal of Electrical and Electronics Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Study of Fuzz Stimuli Generation for Asynchronous Fifo And Memory Coherency Verification\",\"authors\":\"\",\"doi\":\"10.33140/jeee.02.03.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on the particularity of holiday load, in this paper, a periodic autoregressive moving average model (PAMAM) algorithm based on selecting optimal input features (SOIF) is proposed to predict the short-term holiday power load. In short-term load forecasting models, there are few researches on feature selection (FS). However, as more and more intelligent hybrid models are used in real-time load forecasting, FS has become a key factor affecting the forecasting accuracy. Based on the idea of SOIF, PAMAM model is proposed to improve the influence of FS factors, and the holiday equations are combined into periodic autoregressive moving average model, so as to improve the short-term forecasting. In order to simplify the calculation, in this paper, the probability distribution is used to calculate the FS, and the autoregressive spline algorithm is used to establish the nonlinear solar radiation and temperature effect model. Based on the statistics of solar radiation intensity, temperature and other data during the Spring Festival, in this paper we analyze the influence of the above factors on the short-term power load forecasting during holidays. Experimental results show that SOIF-PAMAM algorithm in which temperature and other weather conditions are considered can significantly improve the prediction accuracy, the average absolute error is 2.45%, and the root mean square error is 2.61%.\",\"PeriodicalId\":39047,\"journal\":{\"name\":\"Journal of Electrical and Electronics Engineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jeee.02.03.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jeee.02.03.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
An Empirical Study of Fuzz Stimuli Generation for Asynchronous Fifo And Memory Coherency Verification
Focusing on the particularity of holiday load, in this paper, a periodic autoregressive moving average model (PAMAM) algorithm based on selecting optimal input features (SOIF) is proposed to predict the short-term holiday power load. In short-term load forecasting models, there are few researches on feature selection (FS). However, as more and more intelligent hybrid models are used in real-time load forecasting, FS has become a key factor affecting the forecasting accuracy. Based on the idea of SOIF, PAMAM model is proposed to improve the influence of FS factors, and the holiday equations are combined into periodic autoregressive moving average model, so as to improve the short-term forecasting. In order to simplify the calculation, in this paper, the probability distribution is used to calculate the FS, and the autoregressive spline algorithm is used to establish the nonlinear solar radiation and temperature effect model. Based on the statistics of solar radiation intensity, temperature and other data during the Spring Festival, in this paper we analyze the influence of the above factors on the short-term power load forecasting during holidays. Experimental results show that SOIF-PAMAM algorithm in which temperature and other weather conditions are considered can significantly improve the prediction accuracy, the average absolute error is 2.45%, and the root mean square error is 2.61%.
期刊介绍:
Journal of Electrical and Electronics Engineering is a scientific interdisciplinary, application-oriented publication that offer to the researchers and to the PhD students the possibility to disseminate their novel and original scientific and research contributions in the field of electrical and electronics engineering. The articles are reviewed by professionals and the selection of the papers is based only on the quality of their content and following the next criteria: the papers presents the research results of the authors, the papers / the content of the papers have not been submitted or published elsewhere, the paper must be written in English, as well as the fact that the papers should include in the reference list papers already published in recent years in the Journal of Electrical and Electronics Engineering that present similar research results. The topics and instructions for authors of this journal can be found to the appropiate sections.