{"title":"包含一个序列项的集合","authors":"MIN CHEN, MIN TANG","doi":"10.1017/s0004972723000904","DOIUrl":null,"url":null,"abstract":"Abstract Let $S=\\{s_{1}, s_{2}, \\ldots \\}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\\alpha $ as $n\\rightarrow \\infty $ and let $\\beta>\\max (\\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\\subset [0, l]$ with $l\\in A$ , $\\gcd A=1$ and $|A|\\geq (2-{k}/{\\lambda \\beta })l/(\\lambda +1)$ , where $\\lambda =\\lceil {k}/{\\beta }\\rceil $ , then $kA\\cap S\\neq \\emptyset $ for $2<\\beta \\leq 3$ and $k\\geq {2\\beta }/{(\\beta -2)}$ or for $\\beta>3$ and $k\\geq 3$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUMSETS CONTAINING A TERM OF A SEQUENCE\",\"authors\":\"MIN CHEN, MIN TANG\",\"doi\":\"10.1017/s0004972723000904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $S=\\\\{s_{1}, s_{2}, \\\\ldots \\\\}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\\\\alpha $ as $n\\\\rightarrow \\\\infty $ and let $\\\\beta>\\\\max (\\\\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\\\\subset [0, l]$ with $l\\\\in A$ , $\\\\gcd A=1$ and $|A|\\\\geq (2-{k}/{\\\\lambda \\\\beta })l/(\\\\lambda +1)$ , where $\\\\lambda =\\\\lceil {k}/{\\\\beta }\\\\rceil $ , then $kA\\\\cap S\\\\neq \\\\emptyset $ for $2<\\\\beta \\\\leq 3$ and $k\\\\geq {2\\\\beta }/{(\\\\beta -2)}$ or for $\\\\beta>3$ and $k\\\\geq 3$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723000904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\alpha $ as $n\rightarrow \infty $ and let $\beta>\max (\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\subset [0, l]$ with $l\in A$ , $\gcd A=1$ and $|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$ , where $\lambda =\lceil {k}/{\beta }\rceil $ , then $kA\cap S\neq \emptyset $ for $2<\beta \leq 3$ and $k\geq {2\beta }/{(\beta -2)}$ or for $\beta>3$ and $k\geq 3$ .