黏性耗散MHD流体通过多孔介质中嵌入旋转系统的移动垂直板的影响

Q3 Chemical Engineering
D. SANTHI KUMARI, VENKATA SUBRAHMANYAM SAJJA, P.M. KISHORE
{"title":"黏性耗散MHD流体通过多孔介质中嵌入旋转系统的移动垂直板的影响","authors":"D. SANTHI KUMARI, VENKATA SUBRAHMANYAM SAJJA, P.M. KISHORE","doi":"10.59441/ijame/172901","DOIUrl":null,"url":null,"abstract":"An incompressible unsteady free convective viscous MHD rotating flow past a moving plate embedded in a porous medium is considered with the influence of viscous dissipation, heat source effects. It is assumed that the flow rotates with angular velocity which is normal to the plate and also that a transverse magnetic field is applied along the normal to the plate. Appropriate dimensionless quantities are applied to change the governing equations into dimensionless form. Then the equations are solved numerically using the Galerkin finite element method. Some important characteristics of the fluid are studied. The results are in good agreement with the available literature.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of viscous dissipative MHD fluid flow past a moving vertical plate with rotating system embedded in porous medium\",\"authors\":\"D. SANTHI KUMARI, VENKATA SUBRAHMANYAM SAJJA, P.M. KISHORE\",\"doi\":\"10.59441/ijame/172901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An incompressible unsteady free convective viscous MHD rotating flow past a moving plate embedded in a porous medium is considered with the influence of viscous dissipation, heat source effects. It is assumed that the flow rotates with angular velocity which is normal to the plate and also that a transverse magnetic field is applied along the normal to the plate. Appropriate dimensionless quantities are applied to change the governing equations into dimensionless form. Then the equations are solved numerically using the Galerkin finite element method. Some important characteristics of the fluid are studied. The results are in good agreement with the available literature.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/172901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/172901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

考虑了粘滞耗散、热源效应的影响,研究了多孔介质中不可压缩非定常自由对流MHD旋转流动。假设气流以垂直于平板的角速度旋转,并沿平板的法线施加横向磁场。采用适当的无因次量将控制方程转化为无因次形式。然后采用伽辽金有限元法对方程进行数值求解。研究了流体的一些重要特性。结果与现有文献一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of viscous dissipative MHD fluid flow past a moving vertical plate with rotating system embedded in porous medium
An incompressible unsteady free convective viscous MHD rotating flow past a moving plate embedded in a porous medium is considered with the influence of viscous dissipation, heat source effects. It is assumed that the flow rotates with angular velocity which is normal to the plate and also that a transverse magnetic field is applied along the normal to the plate. Appropriate dimensionless quantities are applied to change the governing equations into dimensionless form. Then the equations are solved numerically using the Galerkin finite element method. Some important characteristics of the fluid are studied. The results are in good agreement with the available literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信