{"title":"重述开普勒距离临界点的计算","authors":"Giovanni F. Gronchi, Giulio Baù, Clara Grassi","doi":"10.1007/s10569-023-10161-4","DOIUrl":null,"url":null,"abstract":"Abstract We consider the Keplerian distance d in the case of two elliptic orbits, i.e., the distance between one point on the first ellipse and one point on the second one, assuming they have a common focus. The absolute minimum $$d_{\\textrm{min}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>d</mml:mi> <mml:mtext>min</mml:mtext> </mml:msub> </mml:math> of this function, called MOID or orbit distance in the literature, is relevant to detect possible impacts between two objects following approximately these elliptic trajectories. We revisit and compare two different approaches to compute the critical points of $$d^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>d</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where we squared the distance d to include crossing points among the critical ones. One approach uses trigonometric polynomials, and the other uses ordinary polynomials. A new way to test the reliability of the computation of $$d_{\\textrm{min}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>d</mml:mi> <mml:mtext>min</mml:mtext> </mml:msub> </mml:math> is introduced, based on optimal estimates that can be found in the literature. The planar case is also discussed: in this case, we present an estimate for the maximal number of critical points of $$d^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>d</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , together with a conjecture supported by numerical tests.","PeriodicalId":72537,"journal":{"name":"Celestial mechanics and dynamical astronomy","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the computation of the critical points of the Keplerian distance\",\"authors\":\"Giovanni F. Gronchi, Giulio Baù, Clara Grassi\",\"doi\":\"10.1007/s10569-023-10161-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the Keplerian distance d in the case of two elliptic orbits, i.e., the distance between one point on the first ellipse and one point on the second one, assuming they have a common focus. The absolute minimum $$d_{\\\\textrm{min}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>d</mml:mi> <mml:mtext>min</mml:mtext> </mml:msub> </mml:math> of this function, called MOID or orbit distance in the literature, is relevant to detect possible impacts between two objects following approximately these elliptic trajectories. We revisit and compare two different approaches to compute the critical points of $$d^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>d</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where we squared the distance d to include crossing points among the critical ones. One approach uses trigonometric polynomials, and the other uses ordinary polynomials. A new way to test the reliability of the computation of $$d_{\\\\textrm{min}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>d</mml:mi> <mml:mtext>min</mml:mtext> </mml:msub> </mml:math> is introduced, based on optimal estimates that can be found in the literature. The planar case is also discussed: in this case, we present an estimate for the maximal number of critical points of $$d^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>d</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , together with a conjecture supported by numerical tests.\",\"PeriodicalId\":72537,\"journal\":{\"name\":\"Celestial mechanics and dynamical astronomy\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celestial mechanics and dynamical astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10569-023-10161-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celestial mechanics and dynamical astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10569-023-10161-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要:我们考虑两个椭圆轨道的开普勒距离d,即第一个椭圆上一点与第二个椭圆上一点之间的距离,假设它们有一个共同的焦点。该函数的绝对最小值$$d_{\textrm{min}}$$ d min,在文献中称为MOID或轨道距离,与检测两个物体之间可能的撞击有关,这些物体大致遵循这些椭圆轨迹。我们重新审视并比较了计算$$d^2$$ d 2临界点的两种不同方法,其中我们对距离d进行平方,以包括临界点之间的交叉点。一种方法使用三角多项式,另一种方法使用普通多项式。本文介绍了一种基于文献中最优估计来检验$$d_{\textrm{min}}$$ d min计算可靠性的新方法。在平面情况下,我们给出了$$d^2$$ d2的最大临界点数的估计,并给出了数值试验支持的一个猜想。
Revisiting the computation of the critical points of the Keplerian distance
Abstract We consider the Keplerian distance d in the case of two elliptic orbits, i.e., the distance between one point on the first ellipse and one point on the second one, assuming they have a common focus. The absolute minimum $$d_{\textrm{min}}$$ dmin of this function, called MOID or orbit distance in the literature, is relevant to detect possible impacts between two objects following approximately these elliptic trajectories. We revisit and compare two different approaches to compute the critical points of $$d^2$$ d2 , where we squared the distance d to include crossing points among the critical ones. One approach uses trigonometric polynomials, and the other uses ordinary polynomials. A new way to test the reliability of the computation of $$d_{\textrm{min}}$$ dmin is introduced, based on optimal estimates that can be found in the literature. The planar case is also discussed: in this case, we present an estimate for the maximal number of critical points of $$d^2$$ d2 , together with a conjecture supported by numerical tests.