ROBOUT:一种高维数据的条件离群值检测方法

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY
Matteo Farnè, Angelos Vouldis
{"title":"ROBOUT:一种高维数据的条件离群值检测方法","authors":"Matteo Farnè, Angelos Vouldis","doi":"10.1007/s00362-023-01492-3","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a methodology, called ROBOUT, to identify outliers conditional on a high-dimensional noisy information set. In particular, ROBOUT is able to identify observations with outlying conditional mean or variance when the dataset contains multivariate outliers in or besides the predictors, multi-collinearity, and a large variable dimension compared to the sample size. ROBOUT entails a pre-processing step, a preliminary robust imputation procedure that prevents anomalous instances from corrupting predictor recovery, a selection stage of the statistically relevant predictors (through cross-validated LASSO-penalized Huber loss regression), the estimation of a robust regression model based on the selected predictors (via MM regression), and a criterion to identify conditional outliers. We conduct a comprehensive simulation study in which the proposed algorithm is tested under a wide range of perturbation scenarios. The combination formed by LASSO-penalized Huber loss and MM regression turns out to be the best in terms of conditional outlier detection under the above described perturbed conditions, also compared to existing integrated methodologies like Sparse Least Trimmed Squares and Robust Least Angle Regression. Furthermore, the proposed methodology is applied to a granular supervisory banking dataset collected by the European Central Bank, in order to model the total assets of euro area banks.","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"64 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROBOUT: a conditional outlier detection methodology for high-dimensional data\",\"authors\":\"Matteo Farnè, Angelos Vouldis\",\"doi\":\"10.1007/s00362-023-01492-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a methodology, called ROBOUT, to identify outliers conditional on a high-dimensional noisy information set. In particular, ROBOUT is able to identify observations with outlying conditional mean or variance when the dataset contains multivariate outliers in or besides the predictors, multi-collinearity, and a large variable dimension compared to the sample size. ROBOUT entails a pre-processing step, a preliminary robust imputation procedure that prevents anomalous instances from corrupting predictor recovery, a selection stage of the statistically relevant predictors (through cross-validated LASSO-penalized Huber loss regression), the estimation of a robust regression model based on the selected predictors (via MM regression), and a criterion to identify conditional outliers. We conduct a comprehensive simulation study in which the proposed algorithm is tested under a wide range of perturbation scenarios. The combination formed by LASSO-penalized Huber loss and MM regression turns out to be the best in terms of conditional outlier detection under the above described perturbed conditions, also compared to existing integrated methodologies like Sparse Least Trimmed Squares and Robust Least Angle Regression. Furthermore, the proposed methodology is applied to a granular supervisory banking dataset collected by the European Central Bank, in order to model the total assets of euro area banks.\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01492-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00362-023-01492-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种基于高维噪声信息集的离群值识别方法——ROBOUT。特别是,当数据集包含预测因子、多重共线性和与样本量相比较大的变量维度内或之外的多变量异常值时,ROBOUT能够识别具有离群条件均值或方差的观测值。ROBOUT需要一个预处理步骤,一个防止异常实例破坏预测器恢复的初步稳健估算程序,一个统计相关预测器的选择阶段(通过交叉验证lasso惩罚Huber损失回归),一个基于所选预测器的稳健回归模型的估计(通过MM回归),以及一个识别条件异常值的标准。我们进行了全面的模拟研究,其中提出的算法在广泛的摄动场景下进行了测试。在上述扰动条件下,与现有的稀疏最小裁剪二乘和鲁棒最小角回归等综合方法相比,lasso惩罚Huber损失和MM回归组合形成的方法在条件离群点检测方面是最好的。此外,所提出的方法应用于欧洲中央银行收集的细粒度监管银行数据集,以便对欧元区银行的总资产进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ROBOUT: a conditional outlier detection methodology for high-dimensional data

ROBOUT: a conditional outlier detection methodology for high-dimensional data
Abstract This paper presents a methodology, called ROBOUT, to identify outliers conditional on a high-dimensional noisy information set. In particular, ROBOUT is able to identify observations with outlying conditional mean or variance when the dataset contains multivariate outliers in or besides the predictors, multi-collinearity, and a large variable dimension compared to the sample size. ROBOUT entails a pre-processing step, a preliminary robust imputation procedure that prevents anomalous instances from corrupting predictor recovery, a selection stage of the statistically relevant predictors (through cross-validated LASSO-penalized Huber loss regression), the estimation of a robust regression model based on the selected predictors (via MM regression), and a criterion to identify conditional outliers. We conduct a comprehensive simulation study in which the proposed algorithm is tested under a wide range of perturbation scenarios. The combination formed by LASSO-penalized Huber loss and MM regression turns out to be the best in terms of conditional outlier detection under the above described perturbed conditions, also compared to existing integrated methodologies like Sparse Least Trimmed Squares and Robust Least Angle Regression. Furthermore, the proposed methodology is applied to a granular supervisory banking dataset collected by the European Central Bank, in order to model the total assets of euro area banks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信