测试大量种群的毒力

test Pub Date : 2023-09-29 DOI:10.1007/s11749-023-00883-w
M. D. Jiménez-Gamero, J. de Uña-Álvarez
{"title":"测试大量种群的毒力","authors":"M. D. Jiménez-Gamero, J. de Uña-Álvarez","doi":"10.1007/s11749-023-00883-w","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the problem of simultaneously testing that each of k samples, coming from k count variables, were all generated by Poisson laws. The means of those populations may differ. The proposed procedure is designed for large k , which can be bigger than the sample sizes. First, a test is proposed for the case of independent samples, and then the obtained results are extended to dependent data. In each case, the asymptotic distribution of the test statistic is stated under the null hypothesis as well as under alternatives, which allows to study the consistency of the test. Specifically, it is shown that the test statistic is asymptotically free distributed under the null hypothesis. The finite sample performance of the test is studied via simulation. A real data set application is included.","PeriodicalId":101465,"journal":{"name":"test","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing Poissonity of a large number of populations\",\"authors\":\"M. D. Jiménez-Gamero, J. de Uña-Álvarez\",\"doi\":\"10.1007/s11749-023-00883-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the problem of simultaneously testing that each of k samples, coming from k count variables, were all generated by Poisson laws. The means of those populations may differ. The proposed procedure is designed for large k , which can be bigger than the sample sizes. First, a test is proposed for the case of independent samples, and then the obtained results are extended to dependent data. In each case, the asymptotic distribution of the test statistic is stated under the null hypothesis as well as under alternatives, which allows to study the consistency of the test. Specifically, it is shown that the test statistic is asymptotically free distributed under the null hypothesis. The finite sample performance of the test is studied via simulation. A real data set application is included.\",\"PeriodicalId\":101465,\"journal\":{\"name\":\"test\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11749-023-00883-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11749-023-00883-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文研究了同时检验k个样本(来自k个计数变量)是否均由泊松定律生成的问题。这些群体的均值可能不同。所提出的程序是为大k设计的,它可以大于样本量。首先对独立样本的情况进行检验,然后将所得结果推广到相关数据。在每种情况下,检验统计量的渐近分布都是在零假设和备选假设下陈述的,这允许研究检验的一致性。具体地说,在零假设下,检验统计量是渐近自由分布的。通过仿真研究了该试验的有限样本性能。包括一个真实的数据集应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing Poissonity of a large number of populations

Testing Poissonity of a large number of populations
Abstract This paper studies the problem of simultaneously testing that each of k samples, coming from k count variables, were all generated by Poisson laws. The means of those populations may differ. The proposed procedure is designed for large k , which can be bigger than the sample sizes. First, a test is proposed for the case of independent samples, and then the obtained results are extended to dependent data. In each case, the asymptotic distribution of the test statistic is stated under the null hypothesis as well as under alternatives, which allows to study the consistency of the test. Specifically, it is shown that the test statistic is asymptotically free distributed under the null hypothesis. The finite sample performance of the test is studied via simulation. A real data set application is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信