药物选择的混合推荐模型

IF 1.2 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Qasem M. KHARMA, Qusai Y. SHAMBOUR, Abdelrahman H. HUSSEIN
{"title":"药物选择的混合推荐模型","authors":"Qasem M. KHARMA, Qusai Y. SHAMBOUR, Abdelrahman H. HUSSEIN","doi":"10.24846/v32i3y202307","DOIUrl":null,"url":null,"abstract":": Medical errors associated with medication pose significant threats to patients’ safety, primarily due to the abundance of drug information available on various online healthcare platforms, leading to challenges in identifying relevant drugs. To address this issue, drug recommendation systems have been developed to assist in selecting appropriate medications for specific medical conditions. Collaborative filtering approaches have been widely used to generate personalized recommendations for various applications. They are easy to implement, debug, and provide justifiable reasoning for recommended items, which is not readily accessible in several other recommendation approaches. Regardless of their success, they still need further enhancements to address challenges related to insufficient rating data, such as data sparsity and new item problems. This paper proposes a drug recommendation model that effectively employs drug taxonomy and multi-criteria collaborative filtering to tackle these challenges. Drug taxonomy enhances recommendation quality by offering a more organized and granular representation of drugs, while multi-criteria rating captures the patients’ preferences more accurately, enabling accurate recommendations that better match the patient’s specific preferences. Experiments conducted on a real-world drug multi-criteria rating dataset demonstrate that the proposed model outperforms baseline recommendation approaches in addressing these challenges and improving prediction accuracy and coverage, making it a valuable tool to assist patients in selecting relevant drugs for their specific medical conditions.","PeriodicalId":49466,"journal":{"name":"Studies in Informatics and Control","volume":"69 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Recommendation Model for Drug Selection\",\"authors\":\"Qasem M. KHARMA, Qusai Y. SHAMBOUR, Abdelrahman H. HUSSEIN\",\"doi\":\"10.24846/v32i3y202307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Medical errors associated with medication pose significant threats to patients’ safety, primarily due to the abundance of drug information available on various online healthcare platforms, leading to challenges in identifying relevant drugs. To address this issue, drug recommendation systems have been developed to assist in selecting appropriate medications for specific medical conditions. Collaborative filtering approaches have been widely used to generate personalized recommendations for various applications. They are easy to implement, debug, and provide justifiable reasoning for recommended items, which is not readily accessible in several other recommendation approaches. Regardless of their success, they still need further enhancements to address challenges related to insufficient rating data, such as data sparsity and new item problems. This paper proposes a drug recommendation model that effectively employs drug taxonomy and multi-criteria collaborative filtering to tackle these challenges. Drug taxonomy enhances recommendation quality by offering a more organized and granular representation of drugs, while multi-criteria rating captures the patients’ preferences more accurately, enabling accurate recommendations that better match the patient’s specific preferences. Experiments conducted on a real-world drug multi-criteria rating dataset demonstrate that the proposed model outperforms baseline recommendation approaches in addressing these challenges and improving prediction accuracy and coverage, making it a valuable tool to assist patients in selecting relevant drugs for their specific medical conditions.\",\"PeriodicalId\":49466,\"journal\":{\"name\":\"Studies in Informatics and Control\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Informatics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24846/v32i3y202307\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Informatics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24846/v32i3y202307","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Recommendation Model for Drug Selection
: Medical errors associated with medication pose significant threats to patients’ safety, primarily due to the abundance of drug information available on various online healthcare platforms, leading to challenges in identifying relevant drugs. To address this issue, drug recommendation systems have been developed to assist in selecting appropriate medications for specific medical conditions. Collaborative filtering approaches have been widely used to generate personalized recommendations for various applications. They are easy to implement, debug, and provide justifiable reasoning for recommended items, which is not readily accessible in several other recommendation approaches. Regardless of their success, they still need further enhancements to address challenges related to insufficient rating data, such as data sparsity and new item problems. This paper proposes a drug recommendation model that effectively employs drug taxonomy and multi-criteria collaborative filtering to tackle these challenges. Drug taxonomy enhances recommendation quality by offering a more organized and granular representation of drugs, while multi-criteria rating captures the patients’ preferences more accurately, enabling accurate recommendations that better match the patient’s specific preferences. Experiments conducted on a real-world drug multi-criteria rating dataset demonstrate that the proposed model outperforms baseline recommendation approaches in addressing these challenges and improving prediction accuracy and coverage, making it a valuable tool to assist patients in selecting relevant drugs for their specific medical conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Informatics and Control
Studies in Informatics and Control AUTOMATION & CONTROL SYSTEMS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
2.70
自引率
25.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: Studies in Informatics and Control journal provides important perspectives on topics relevant to Information Technology, with an emphasis on useful applications in the most important areas of IT. This journal is aimed at advanced practitioners and researchers in the field of IT and welcomes original contributions from scholars and professionals worldwide. SIC is published both in print and online by the National Institute for R&D in Informatics, ICI Bucharest. Abstracts, full text and graphics of all articles in the online version of SIC are identical to the print version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信