Hasan Eser, Oğuzhan Hasançebi, Ahmet Yakut, Saeed Gholizadeh
{"title":"基于能力控制搜索算法的钢框架基于性能的设计优化:与基于力的设计方法的比较","authors":"Hasan Eser, Oğuzhan Hasançebi, Ahmet Yakut, Saeed Gholizadeh","doi":"10.1080/15732479.2023.2263442","DOIUrl":null,"url":null,"abstract":"AbstractThe capacity controlled search (CCS) method, which is a recently developed design-driven search algorithm, is implemented for performance-based design optimization (PBDO) of steel moment frames. It is shown that the CCS method is very suitable for PBDO problems since it can locate the optimum solution using a reasonable computational effort unlike metaheuristic search approaches, which often require thousands of structural analyses before converging to a near-optimum solution. Considering the fact that performance-based design (PBD) is a recently emerging design methodology, its comparison with the traditional force-based design (FBD) approach is also carried out extensively in this study. Accordingly, the optimum designs of the investigated steel frames produced according to both design methodologies using the CCS method are compared in terms of structural weight and seismic performance. Unlike most of the previous studies, not only inter-story drifts but also hinge rotation limits are considered as seismic performance criterion during PBDO process of steel moment frames. The numerical applications are presented using three ordinary moment resisting steel frames. It is shown that although the FBD methodology usually leads to heavier designs with respect to the PBD methodology, the optimum designs produced according to the former might fail to satisfy seismic performance requirements.Keywords: Capacity controlled searchcost-performance comparisondesign-driven searchdiscrete sizing optimizationforce-based designperformance-based designsteel moment framesstructural optimization Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance-based design optimization of steel moment frames using capacity controlled search algorithm: a comparison with force-based design approach\",\"authors\":\"Hasan Eser, Oğuzhan Hasançebi, Ahmet Yakut, Saeed Gholizadeh\",\"doi\":\"10.1080/15732479.2023.2263442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe capacity controlled search (CCS) method, which is a recently developed design-driven search algorithm, is implemented for performance-based design optimization (PBDO) of steel moment frames. It is shown that the CCS method is very suitable for PBDO problems since it can locate the optimum solution using a reasonable computational effort unlike metaheuristic search approaches, which often require thousands of structural analyses before converging to a near-optimum solution. Considering the fact that performance-based design (PBD) is a recently emerging design methodology, its comparison with the traditional force-based design (FBD) approach is also carried out extensively in this study. Accordingly, the optimum designs of the investigated steel frames produced according to both design methodologies using the CCS method are compared in terms of structural weight and seismic performance. Unlike most of the previous studies, not only inter-story drifts but also hinge rotation limits are considered as seismic performance criterion during PBDO process of steel moment frames. The numerical applications are presented using three ordinary moment resisting steel frames. It is shown that although the FBD methodology usually leads to heavier designs with respect to the PBD methodology, the optimum designs produced according to the former might fail to satisfy seismic performance requirements.Keywords: Capacity controlled searchcost-performance comparisondesign-driven searchdiscrete sizing optimizationforce-based designperformance-based designsteel moment framesstructural optimization Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.\",\"PeriodicalId\":49468,\"journal\":{\"name\":\"Structure and Infrastructure Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure and Infrastructure Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15732479.2023.2263442\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure and Infrastructure Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15732479.2023.2263442","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Performance-based design optimization of steel moment frames using capacity controlled search algorithm: a comparison with force-based design approach
AbstractThe capacity controlled search (CCS) method, which is a recently developed design-driven search algorithm, is implemented for performance-based design optimization (PBDO) of steel moment frames. It is shown that the CCS method is very suitable for PBDO problems since it can locate the optimum solution using a reasonable computational effort unlike metaheuristic search approaches, which often require thousands of structural analyses before converging to a near-optimum solution. Considering the fact that performance-based design (PBD) is a recently emerging design methodology, its comparison with the traditional force-based design (FBD) approach is also carried out extensively in this study. Accordingly, the optimum designs of the investigated steel frames produced according to both design methodologies using the CCS method are compared in terms of structural weight and seismic performance. Unlike most of the previous studies, not only inter-story drifts but also hinge rotation limits are considered as seismic performance criterion during PBDO process of steel moment frames. The numerical applications are presented using three ordinary moment resisting steel frames. It is shown that although the FBD methodology usually leads to heavier designs with respect to the PBD methodology, the optimum designs produced according to the former might fail to satisfy seismic performance requirements.Keywords: Capacity controlled searchcost-performance comparisondesign-driven searchdiscrete sizing optimizationforce-based designperformance-based designsteel moment framesstructural optimization Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
期刊介绍:
Structure and Infrastructure Engineering - Maintenance, Management, Life-Cycle Design and Performance is an international Journal dedicated to recent advances in maintenance, management and life-cycle performance of a wide range of infrastructures, such as: buildings, bridges, dams, railways, underground constructions, offshore platforms, pipelines, naval vessels, ocean structures, nuclear power plants, airplanes and other types of structures including aerospace and automotive structures.
The Journal presents research and developments on the most advanced technologies for analyzing, predicting and optimizing infrastructure performance. The main gaps to be filled are those between researchers and practitioners in maintenance, management and life-cycle performance of infrastructure systems, and those between professionals working on different types of infrastructures. To this end, the journal will provide a forum for a broad blend of scientific, technical and practical papers. The journal is endorsed by the International Association for Life-Cycle Civil Engineering ( IALCCE) and the International Association for Bridge Maintenance and Safety ( IABMAS).