{"title":"用紧密间隙搅拌器搅拌粘塑性流体的旋转容器","authors":"Amine Benmoussa","doi":"10.3390/eng4040144","DOIUrl":null,"url":null,"abstract":"Technological advancements have continued to progress in all fields, achieving remarkable feats. Additionally, productivity is increasing across the board as a result of strong economic expansion, which has encouraged changes in people’s way of life, such as the increasing use of pharmaceutical products, cosmetics, detergents, and food products. A hydrothermal study is required in these areas to optimize the design of the stirring system. The aim of the current work is to investigate the hydrodynamics and thermodynamics of a mechanical agitation system with a non-Newtonian fluid of the Bingham–Bercovier type in a cylindrical vessel with three blade configurations. Our research is specifically directed towards mechanically agitated systems utilizing close clearance stirrers, particularly focusing on the anchor, gate and two-bladed impellers, within cylindrical tanks that possess flat bottoms without baffles. The results show that the anchor impeller, with its broad blades and low-shear characteristics, is more suited for breaking down yield stress and inducing flow in these fluids, which creates a wide flow pattern that effectively overcomes yield stress. However, the addition of vertical arms to transform it into a gate impeller promotes mixing, heat transfer and thermal efficiency with a small energy cost compared to an anchor impeller against the two-bladed impeller.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agitation of Viscoplastic Fluid in a Rotating Vessel Using Close Clearance Agitators\",\"authors\":\"Amine Benmoussa\",\"doi\":\"10.3390/eng4040144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological advancements have continued to progress in all fields, achieving remarkable feats. Additionally, productivity is increasing across the board as a result of strong economic expansion, which has encouraged changes in people’s way of life, such as the increasing use of pharmaceutical products, cosmetics, detergents, and food products. A hydrothermal study is required in these areas to optimize the design of the stirring system. The aim of the current work is to investigate the hydrodynamics and thermodynamics of a mechanical agitation system with a non-Newtonian fluid of the Bingham–Bercovier type in a cylindrical vessel with three blade configurations. Our research is specifically directed towards mechanically agitated systems utilizing close clearance stirrers, particularly focusing on the anchor, gate and two-bladed impellers, within cylindrical tanks that possess flat bottoms without baffles. The results show that the anchor impeller, with its broad blades and low-shear characteristics, is more suited for breaking down yield stress and inducing flow in these fluids, which creates a wide flow pattern that effectively overcomes yield stress. However, the addition of vertical arms to transform it into a gate impeller promotes mixing, heat transfer and thermal efficiency with a small energy cost compared to an anchor impeller against the two-bladed impeller.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4040144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4040144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agitation of Viscoplastic Fluid in a Rotating Vessel Using Close Clearance Agitators
Technological advancements have continued to progress in all fields, achieving remarkable feats. Additionally, productivity is increasing across the board as a result of strong economic expansion, which has encouraged changes in people’s way of life, such as the increasing use of pharmaceutical products, cosmetics, detergents, and food products. A hydrothermal study is required in these areas to optimize the design of the stirring system. The aim of the current work is to investigate the hydrodynamics and thermodynamics of a mechanical agitation system with a non-Newtonian fluid of the Bingham–Bercovier type in a cylindrical vessel with three blade configurations. Our research is specifically directed towards mechanically agitated systems utilizing close clearance stirrers, particularly focusing on the anchor, gate and two-bladed impellers, within cylindrical tanks that possess flat bottoms without baffles. The results show that the anchor impeller, with its broad blades and low-shear characteristics, is more suited for breaking down yield stress and inducing flow in these fluids, which creates a wide flow pattern that effectively overcomes yield stress. However, the addition of vertical arms to transform it into a gate impeller promotes mixing, heat transfer and thermal efficiency with a small energy cost compared to an anchor impeller against the two-bladed impeller.