带多点非接触位移检测系统的现代化共振柱扭剪仪

IF 0.7 Q4 MECHANICS
Marcin Bujko, Marta Bocheńska, Piotr Srokosz, Ireneusz Dyka
{"title":"带多点非接触位移检测系统的现代化共振柱扭剪仪","authors":"Marcin Bujko, Marta Bocheńska, Piotr Srokosz, Ireneusz Dyka","doi":"10.2478/sgem-2023-0018","DOIUrl":null,"url":null,"abstract":"Abstract In this study, a modification of resonant column/torsional shearing (RC/TS) apparatus was proposed to perform a qualitative analysis of a noncohesive soil specimen vibration during RC tests. An additional multipoint displacement detection system was installed in the RC/TS WF8500 device. In the new measuring system, 48 mini-magnets are attached to the side surface of a cylindrical soil specimen, creating a regular grid of measuring points. Around 48 Hall sensors (Honeywell SS495A1) are used to measure changes in the magnetic field strength due to the movement of the corresponding magnets on the surface of the specimen subjected to dynamic torque. The Hall sensor generates an analog signal that is proportional to the change in the magnetic field. The measurements are collected with a newly developed data acquisition system that consists of a set of analog-to-digital converters and a set of ARM (Advanced RISC (Reduced Instruction Sets Computing) Machine) microcontrollers. The measurement system is controlled with a dedicated software, ControlRec, developed by the authors. The measurements are taken synchronically with and independently from the standard RC test procedure. The new measuring technique allows to observe displacements of the 48 points on the specimens’ surface with over 4 times higher sampling rate than in the original measuring system. As a result, additional effects related to the mechanical wave propagation through soil specimen were observed (local disturbances in distribution of vibration amplitudes or significant displacements near the bottom end of the specimen, which is assumed to be fixed in the standard RC/TS results analysis), that could not be identified using the standard equipment of the device.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modernized Resonant Column and Torsional Shearing Apparatus With Multipoint Contactless Displacement Detection System\",\"authors\":\"Marcin Bujko, Marta Bocheńska, Piotr Srokosz, Ireneusz Dyka\",\"doi\":\"10.2478/sgem-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, a modification of resonant column/torsional shearing (RC/TS) apparatus was proposed to perform a qualitative analysis of a noncohesive soil specimen vibration during RC tests. An additional multipoint displacement detection system was installed in the RC/TS WF8500 device. In the new measuring system, 48 mini-magnets are attached to the side surface of a cylindrical soil specimen, creating a regular grid of measuring points. Around 48 Hall sensors (Honeywell SS495A1) are used to measure changes in the magnetic field strength due to the movement of the corresponding magnets on the surface of the specimen subjected to dynamic torque. The Hall sensor generates an analog signal that is proportional to the change in the magnetic field. The measurements are collected with a newly developed data acquisition system that consists of a set of analog-to-digital converters and a set of ARM (Advanced RISC (Reduced Instruction Sets Computing) Machine) microcontrollers. The measurement system is controlled with a dedicated software, ControlRec, developed by the authors. The measurements are taken synchronically with and independently from the standard RC test procedure. The new measuring technique allows to observe displacements of the 48 points on the specimens’ surface with over 4 times higher sampling rate than in the original measuring system. As a result, additional effects related to the mechanical wave propagation through soil specimen were observed (local disturbances in distribution of vibration amplitudes or significant displacements near the bottom end of the specimen, which is assumed to be fixed in the standard RC/TS results analysis), that could not be identified using the standard equipment of the device.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2023-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种改进的RC/TS共振柱/扭剪(RC/TS)装置,用于定性分析非粘性土试件在RC试验中的振动。在RC/TS WF8500装置中安装了一个额外的多点位移检测系统。在新的测量系统中,48个微型磁铁附着在圆柱形土壤样本的侧面,形成一个规则的测量点网格。大约48个霍尔传感器(霍尼韦尔SS495A1)被用来测量在动态扭矩作用下试样表面相应磁体的运动所引起的磁场强度变化。霍尔传感器产生与磁场变化成正比的模拟信号。测量数据是用新开发的数据采集系统收集的,该系统由一组模数转换器和一组ARM(高级精简指令集计算机)微控制器组成。该测量系统由作者开发的专用软件ControlRec控制。测量与标准RC测试程序同步进行,独立于标准RC测试程序。新的测量技术可以观察到试样表面48个点的位移,采样率比原来的测量系统高4倍以上。因此,观察到与土样中机械波传播相关的附加效应(振动幅值分布的局部扰动或试件底部附近的显著位移,在标准RC/TS结果分析中假设是固定的),而使用设备的标准设备无法识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modernized Resonant Column and Torsional Shearing Apparatus With Multipoint Contactless Displacement Detection System
Abstract In this study, a modification of resonant column/torsional shearing (RC/TS) apparatus was proposed to perform a qualitative analysis of a noncohesive soil specimen vibration during RC tests. An additional multipoint displacement detection system was installed in the RC/TS WF8500 device. In the new measuring system, 48 mini-magnets are attached to the side surface of a cylindrical soil specimen, creating a regular grid of measuring points. Around 48 Hall sensors (Honeywell SS495A1) are used to measure changes in the magnetic field strength due to the movement of the corresponding magnets on the surface of the specimen subjected to dynamic torque. The Hall sensor generates an analog signal that is proportional to the change in the magnetic field. The measurements are collected with a newly developed data acquisition system that consists of a set of analog-to-digital converters and a set of ARM (Advanced RISC (Reduced Instruction Sets Computing) Machine) microcontrollers. The measurement system is controlled with a dedicated software, ControlRec, developed by the authors. The measurements are taken synchronically with and independently from the standard RC test procedure. The new measuring technique allows to observe displacements of the 48 points on the specimens’ surface with over 4 times higher sampling rate than in the original measuring system. As a result, additional effects related to the mechanical wave propagation through soil specimen were observed (local disturbances in distribution of vibration amplitudes or significant displacements near the bottom end of the specimen, which is assumed to be fixed in the standard RC/TS results analysis), that could not be identified using the standard equipment of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信