Berkovich环空的回火anabelian行为

IF 0.5 4区 数学 Q3 MATHEMATICS
Sylvain Gaulhiac
{"title":"Berkovich环空的回火anabelian行为","authors":"Sylvain Gaulhiac","doi":"10.24033/bsmf.2862","DOIUrl":null,"url":null,"abstract":"This work brings to light some partial \\emph{anabelian behaviours} of analytic annuli in the context of Berkovich geometry. More specifically, if $k$ is a valued non-archimedean complete field of mixed characteristic which is algebraically closed, and $\\mathcal{C}_1$, $\\mathcal{C}_2$ are two $k$-analytic annuli with isomorphic tempered fundamental group, we show that the lengths of $\\mathcal{C}_1$ and $\\mathcal{C}_2$ cannot be too far from each other. When they are finite, we show that the absolute value of their difference is bounded above with a bound depending only on the residual characteristic $p$.","PeriodicalId":55332,"journal":{"name":"Bulletin De La Societe Mathematique De France","volume":"21 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards tempered anabelian behaviour of Berkovich annuli\",\"authors\":\"Sylvain Gaulhiac\",\"doi\":\"10.24033/bsmf.2862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work brings to light some partial \\\\emph{anabelian behaviours} of analytic annuli in the context of Berkovich geometry. More specifically, if $k$ is a valued non-archimedean complete field of mixed characteristic which is algebraically closed, and $\\\\mathcal{C}_1$, $\\\\mathcal{C}_2$ are two $k$-analytic annuli with isomorphic tempered fundamental group, we show that the lengths of $\\\\mathcal{C}_1$ and $\\\\mathcal{C}_2$ cannot be too far from each other. When they are finite, we show that the absolute value of their difference is bounded above with a bound depending only on the residual characteristic $p$.\",\"PeriodicalId\":55332,\"journal\":{\"name\":\"Bulletin De La Societe Mathematique De France\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin De La Societe Mathematique De France\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24033/bsmf.2862\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin De La Societe Mathematique De France","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24033/bsmf.2862","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究揭示了在Berkovich几何背景下解析环空的部分\emph{可倒}性。更具体地说,如果$k$是一个代数封闭的有值的非阿基米德混合特征完备域,并且$\mathcal{C}_1$、$\mathcal{C}_2$是两个具有同构调质基群的$k$ -解析环,则证明了$\mathcal{C}_1$和$\mathcal{C}_2$的长度不能相距太远。当它们是有限时,我们证明它们的差值的绝对值是有界的,其边界仅取决于残差特征$p$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards tempered anabelian behaviour of Berkovich annuli
This work brings to light some partial \emph{anabelian behaviours} of analytic annuli in the context of Berkovich geometry. More specifically, if $k$ is a valued non-archimedean complete field of mixed characteristic which is algebraically closed, and $\mathcal{C}_1$, $\mathcal{C}_2$ are two $k$-analytic annuli with isomorphic tempered fundamental group, we show that the lengths of $\mathcal{C}_1$ and $\mathcal{C}_2$ cannot be too far from each other. When they are finite, we show that the absolute value of their difference is bounded above with a bound depending only on the residual characteristic $p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Bulletin de la Société Mathématique de France was founded in 1873, and it has published works by some of the most prestigious mathematicians, including for example H. Poincaré, E. Borel, E. Cartan, A. Grothendieck and J. Leray. It continues to be a journal of the highest mathematical quality, using a rigorous refereeing process, as well as a discerning selection procedure. Its editorial board members have diverse specializations in mathematics, ensuring that articles in all areas of mathematics are considered. Promising work by young authors is encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信