Hana Chmelíčková, Martina Havelková, Aneta Hrubantová, Vlastimil Jílek, Lukáš Václavek, Tomáš Ingr
{"title":"TI6AL4V与不锈钢复合搭接焊青铜夹层的研究","authors":"Hana Chmelíčková, Martina Havelková, Aneta Hrubantová, Vlastimil Jílek, Lukáš Václavek, Tomáš Ingr","doi":"10.2478/pmp-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract Welding of the austenitic stainless steel AISI 304 and Ti6Al4V is complicated by hard and brittle intermetallic compound formation. In this contribution, we study a laser welding method that partially overcomes this problem using interlayer. Bronze foil (CuSn6) of thickness 100 µm and 200 µm was inserted between steel and titanium sheets and lap welds were realized on pulsed Nd:YAG laser. Representative samples were investigated by nanohardness measurement, SEM/EDS, and XRD analysis to detect the localization of the intermetallic phases. The macrostructure of the weld cross sections was displayed by optical and digital microscopy. The nano-hardness test revealed the presence of very hard intermetallic mainly around the interface between the fusion zone and bottom metal sheet. EDS mapping displayed the main elements Fe, Cr, Cu and Ti distribution in the fusion zone, EDS line scanning detected elements‘ signals in the diagonal and horizontal directions. XRD analysis revealed expected intermetallic compounds FeTi and CuTi 2 and solid solution Cu 0.8 Fe 0.2 .","PeriodicalId":52175,"journal":{"name":"Powder Metallurgy Progress","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Hybrid Lap Welds of TI6AL4V and Stainless Steel with Bronze Interlayer\",\"authors\":\"Hana Chmelíčková, Martina Havelková, Aneta Hrubantová, Vlastimil Jílek, Lukáš Václavek, Tomáš Ingr\",\"doi\":\"10.2478/pmp-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Welding of the austenitic stainless steel AISI 304 and Ti6Al4V is complicated by hard and brittle intermetallic compound formation. In this contribution, we study a laser welding method that partially overcomes this problem using interlayer. Bronze foil (CuSn6) of thickness 100 µm and 200 µm was inserted between steel and titanium sheets and lap welds were realized on pulsed Nd:YAG laser. Representative samples were investigated by nanohardness measurement, SEM/EDS, and XRD analysis to detect the localization of the intermetallic phases. The macrostructure of the weld cross sections was displayed by optical and digital microscopy. The nano-hardness test revealed the presence of very hard intermetallic mainly around the interface between the fusion zone and bottom metal sheet. EDS mapping displayed the main elements Fe, Cr, Cu and Ti distribution in the fusion zone, EDS line scanning detected elements‘ signals in the diagonal and horizontal directions. XRD analysis revealed expected intermetallic compounds FeTi and CuTi 2 and solid solution Cu 0.8 Fe 0.2 .\",\"PeriodicalId\":52175,\"journal\":{\"name\":\"Powder Metallurgy Progress\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pmp-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pmp-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
奥氏体不锈钢AISI 304与Ti6Al4V的焊接过程中会形成硬脆的金属间化合物。在本文中,我们研究了一种使用中间层的激光焊接方法,部分地克服了这一问题。采用脉冲Nd:YAG激光将厚度分别为100µm和200µm的铜箔(CuSn6)插入钢和钛板之间,实现了接焊。采用纳米硬度测定、SEM/EDS、XRD分析等方法对代表性样品进行了金属间相定位分析。通过光学显微镜和数码显微镜观察了焊缝截面的宏观组织。纳米硬度测试表明,极硬金属间主要存在于熔合区与底金属板交界面周围。能谱图显示了熔合区内主要元素Fe、Cr、Cu和Ti的分布,能谱线扫描在对角线和水平方向检测到元素的信号。XRD分析表明,金属间化合物为FeTi和CuTi 2,固溶体为Cu 0.8 Fe 0.2。
Investigation of Hybrid Lap Welds of TI6AL4V and Stainless Steel with Bronze Interlayer
Abstract Welding of the austenitic stainless steel AISI 304 and Ti6Al4V is complicated by hard and brittle intermetallic compound formation. In this contribution, we study a laser welding method that partially overcomes this problem using interlayer. Bronze foil (CuSn6) of thickness 100 µm and 200 µm was inserted between steel and titanium sheets and lap welds were realized on pulsed Nd:YAG laser. Representative samples were investigated by nanohardness measurement, SEM/EDS, and XRD analysis to detect the localization of the intermetallic phases. The macrostructure of the weld cross sections was displayed by optical and digital microscopy. The nano-hardness test revealed the presence of very hard intermetallic mainly around the interface between the fusion zone and bottom metal sheet. EDS mapping displayed the main elements Fe, Cr, Cu and Ti distribution in the fusion zone, EDS line scanning detected elements‘ signals in the diagonal and horizontal directions. XRD analysis revealed expected intermetallic compounds FeTi and CuTi 2 and solid solution Cu 0.8 Fe 0.2 .