具有不连续解的椭圆界面问题的高阶丰富有限元方法

IF 1.3 4区 数学 Q1 MATHEMATICS
Champike Attanayake, So-Hsiang Chou null, Quanling Deng
{"title":"具有不连续解的椭圆界面问题的高阶丰富有限元方法","authors":"Champike Attanayake, So-Hsiang Chou null, Quanling Deng","doi":"10.4208/ijnam2023-1038","DOIUrl":null,"url":null,"abstract":"Elliptic interface problems whose solutions are $C^0$ continuous have been well studied over the past two decades. The well-known numerical methods include the strongly stable generalized finite element method (SGFEM) and immersed FEM (IFEM). In this paper, we study numerically a larger class of elliptic interface problems where their solutions are discontinuous. A direct application of these existing methods fails immediately as the approximate solution is in a larger space that covers discontinuous functions. We propose a class of high-order enriched unfitted FEMs to solve these problems with implicit or Robin-type interface jump conditions. We design new enrichment functions that capture the imposed discontinuity of the solution while keeping the condition number from fast growth. A linear enriched method in 1D was recently developed using one enrichment function and we generalized it to an arbitrary degree using two simple discontinuous one-sided enrichment functions. The natural tensor product extension to the 2D case is demonstrated. Optimal order convergence in the $L^2$ and broken $H^1$-norms are established. We also establish superconvergence at all discretization nodes (including exact nodal values in special cases). Numerical examples are provided to confirm the theory. Finally, to prove the efficiency of the method for practical problems, the enriched linear, quadratic, and cubic elements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump conditions and implicit concentration interface conditions are both present.","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"12 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Order Enriched Finite Element Methods for Elliptic Interface Problems with Discontinuous Solutions\",\"authors\":\"Champike Attanayake, So-Hsiang Chou null, Quanling Deng\",\"doi\":\"10.4208/ijnam2023-1038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elliptic interface problems whose solutions are $C^0$ continuous have been well studied over the past two decades. The well-known numerical methods include the strongly stable generalized finite element method (SGFEM) and immersed FEM (IFEM). In this paper, we study numerically a larger class of elliptic interface problems where their solutions are discontinuous. A direct application of these existing methods fails immediately as the approximate solution is in a larger space that covers discontinuous functions. We propose a class of high-order enriched unfitted FEMs to solve these problems with implicit or Robin-type interface jump conditions. We design new enrichment functions that capture the imposed discontinuity of the solution while keeping the condition number from fast growth. A linear enriched method in 1D was recently developed using one enrichment function and we generalized it to an arbitrary degree using two simple discontinuous one-sided enrichment functions. The natural tensor product extension to the 2D case is demonstrated. Optimal order convergence in the $L^2$ and broken $H^1$-norms are established. We also establish superconvergence at all discretization nodes (including exact nodal values in special cases). Numerical examples are provided to confirm the theory. Finally, to prove the efficiency of the method for practical problems, the enriched linear, quadratic, and cubic elements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump conditions and implicit concentration interface conditions are both present.\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2023-1038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/ijnam2023-1038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Order Enriched Finite Element Methods for Elliptic Interface Problems with Discontinuous Solutions
Elliptic interface problems whose solutions are $C^0$ continuous have been well studied over the past two decades. The well-known numerical methods include the strongly stable generalized finite element method (SGFEM) and immersed FEM (IFEM). In this paper, we study numerically a larger class of elliptic interface problems where their solutions are discontinuous. A direct application of these existing methods fails immediately as the approximate solution is in a larger space that covers discontinuous functions. We propose a class of high-order enriched unfitted FEMs to solve these problems with implicit or Robin-type interface jump conditions. We design new enrichment functions that capture the imposed discontinuity of the solution while keeping the condition number from fast growth. A linear enriched method in 1D was recently developed using one enrichment function and we generalized it to an arbitrary degree using two simple discontinuous one-sided enrichment functions. The natural tensor product extension to the 2D case is demonstrated. Optimal order convergence in the $L^2$ and broken $H^1$-norms are established. We also establish superconvergence at all discretization nodes (including exact nodal values in special cases). Numerical examples are provided to confirm the theory. Finally, to prove the efficiency of the method for practical problems, the enriched linear, quadratic, and cubic elements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump conditions and implicit concentration interface conditions are both present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信