Ising链中的量子输运:全局vs局部方法

Q4 Physics and Astronomy
{"title":"Ising链中的量子输运:全局vs局部方法","authors":"","doi":"10.47176/ijpr.23.1.11598","DOIUrl":null,"url":null,"abstract":"We study energy and spin transport in a one-dimensional Ising chain which is connected to two separate heat baths on both sides. By applying the Born-Markov approximation, within the global approach, we derive the Markovian master equation of the system, and also the explicit form of the Lindblad operators and the steady state. Thereafter, we investigate the behavior of energy and spin dynamics of the system in the global regime. Finally, we solve the problem with the local approach, and we show that the results are not the same for both approaches.","PeriodicalId":38961,"journal":{"name":"Iranian Journal of Physics Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum transport in the Ising chain: global vs local approach\",\"authors\":\"\",\"doi\":\"10.47176/ijpr.23.1.11598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study energy and spin transport in a one-dimensional Ising chain which is connected to two separate heat baths on both sides. By applying the Born-Markov approximation, within the global approach, we derive the Markovian master equation of the system, and also the explicit form of the Lindblad operators and the steady state. Thereafter, we investigate the behavior of energy and spin dynamics of the system in the global regime. Finally, we solve the problem with the local approach, and we show that the results are not the same for both approaches.\",\"PeriodicalId\":38961,\"journal\":{\"name\":\"Iranian Journal of Physics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47176/ijpr.23.1.11598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/ijpr.23.1.11598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一维伊辛链中的能量和自旋输运,它连接到两侧的两个独立的热浴。通过应用Born-Markov近似,在全局方法内,我们导出了系统的马尔可夫主方程,以及Lindblad算子和稳态的显式形式。然后,我们研究了系统在全局状态下的能量和自旋动力学行为。最后,我们用局部方法解决了这个问题,并证明了两种方法的结果并不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum transport in the Ising chain: global vs local approach
We study energy and spin transport in a one-dimensional Ising chain which is connected to two separate heat baths on both sides. By applying the Born-Markov approximation, within the global approach, we derive the Markovian master equation of the system, and also the explicit form of the Lindblad operators and the steady state. Thereafter, we investigate the behavior of energy and spin dynamics of the system in the global regime. Finally, we solve the problem with the local approach, and we show that the results are not the same for both approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Physics Research
Iranian Journal of Physics Research Physics and Astronomy-Physics and Astronomy (all)
CiteScore
0.20
自引率
0.00%
发文量
0
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信