Feza Kerestecioğlu, Ümit Şen, Çağrı Işıkver, Ahmet Göktekin
{"title":"非通信机器人群体通过局部策略形成的圆形队形","authors":"Feza Kerestecioğlu, Ümit Şen, Çağrı Işıkver, Ahmet Göktekin","doi":"10.1177/10597123231204627","DOIUrl":null,"url":null,"abstract":"Local strategies, which are based on cost minimization, to achieve circular formations of autonomous robot groups are presented. It is assumed that the group members have no communication capabilities or any means of interchanging information among themselves, and that they can only rely on their sensors, which provide relative positions of their nearby group members. It is verified on simulations that via appropriately defined cost functions arc, arc-triangle and circle formations are obtained, which can be maintained during navigation.","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"45 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular formations of non-communicating robot groups via local strategies\",\"authors\":\"Feza Kerestecioğlu, Ümit Şen, Çağrı Işıkver, Ahmet Göktekin\",\"doi\":\"10.1177/10597123231204627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local strategies, which are based on cost minimization, to achieve circular formations of autonomous robot groups are presented. It is assumed that the group members have no communication capabilities or any means of interchanging information among themselves, and that they can only rely on their sensors, which provide relative positions of their nearby group members. It is verified on simulations that via appropriately defined cost functions arc, arc-triangle and circle formations are obtained, which can be maintained during navigation.\",\"PeriodicalId\":55552,\"journal\":{\"name\":\"Adaptive Behavior\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10597123231204627\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10597123231204627","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Circular formations of non-communicating robot groups via local strategies
Local strategies, which are based on cost minimization, to achieve circular formations of autonomous robot groups are presented. It is assumed that the group members have no communication capabilities or any means of interchanging information among themselves, and that they can only rely on their sensors, which provide relative positions of their nearby group members. It is verified on simulations that via appropriately defined cost functions arc, arc-triangle and circle formations are obtained, which can be maintained during navigation.
期刊介绍:
_Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling.
Print ISSN: 1059-7123