{"title":"基于语篇结构的两阶段长文本摘要方法","authors":"Xin Zhang, Qiyi Wei, Qing Song, Pengzhou Zhang","doi":"10.4018/ijsi.331091","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-stage automatic text summarization method based on discourse structure, aiming to improve the accuracy and coherence of the summary. In the extractive stage, a text encoder divides the long text into elementary discourse units (EDUs). Then a parse tree based on rhetorical structure theory is constructed for the whole discourse while annotating nuclearity information. The nuclearity terminal nodes are selected based on the summary length requirement, and the key EDU sequence is output. The authors use a pointer generator network and a coverage mechanism in the generation stage. The nuclearity information of EDUs is to update the word attention distribution in the pointer generator, which not only accurately reproduces the critical details of the text but also avoids self-repetition. Experiments on the standard text summarization dataset (CNN/DailyMail) show that the ROUGE score of the proposed two-stage model is better than that of the current best baseline model, and the summary achieves corresponding improvements in accuracy and coherence.","PeriodicalId":55938,"journal":{"name":"International Journal of Software Innovation","volume":"22 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Long Text Summarization Method Based on Discourse Structure\",\"authors\":\"Xin Zhang, Qiyi Wei, Qing Song, Pengzhou Zhang\",\"doi\":\"10.4018/ijsi.331091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a two-stage automatic text summarization method based on discourse structure, aiming to improve the accuracy and coherence of the summary. In the extractive stage, a text encoder divides the long text into elementary discourse units (EDUs). Then a parse tree based on rhetorical structure theory is constructed for the whole discourse while annotating nuclearity information. The nuclearity terminal nodes are selected based on the summary length requirement, and the key EDU sequence is output. The authors use a pointer generator network and a coverage mechanism in the generation stage. The nuclearity information of EDUs is to update the word attention distribution in the pointer generator, which not only accurately reproduces the critical details of the text but also avoids self-repetition. Experiments on the standard text summarization dataset (CNN/DailyMail) show that the ROUGE score of the proposed two-stage model is better than that of the current best baseline model, and the summary achieves corresponding improvements in accuracy and coherence.\",\"PeriodicalId\":55938,\"journal\":{\"name\":\"International Journal of Software Innovation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.331091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.331091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Two-Stage Long Text Summarization Method Based on Discourse Structure
This paper proposes a two-stage automatic text summarization method based on discourse structure, aiming to improve the accuracy and coherence of the summary. In the extractive stage, a text encoder divides the long text into elementary discourse units (EDUs). Then a parse tree based on rhetorical structure theory is constructed for the whole discourse while annotating nuclearity information. The nuclearity terminal nodes are selected based on the summary length requirement, and the key EDU sequence is output. The authors use a pointer generator network and a coverage mechanism in the generation stage. The nuclearity information of EDUs is to update the word attention distribution in the pointer generator, which not only accurately reproduces the critical details of the text but also avoids self-repetition. Experiments on the standard text summarization dataset (CNN/DailyMail) show that the ROUGE score of the proposed two-stage model is better than that of the current best baseline model, and the summary achieves corresponding improvements in accuracy and coherence.
期刊介绍:
The International Journal of Software Innovation (IJSI) covers state-of-the-art research and development in all aspects of evolutionary and revolutionary ideas pertaining to software systems and their development. The journal publishes original papers on both theory and practice that reflect and accommodate the fast-changing nature of daily life. Topics of interest include not only application-independent software systems, but also application-specific software systems like healthcare, education, energy, and entertainment software systems, as well as techniques and methodologies for modeling, developing, validating, maintaining, and reengineering software systems and their environments.