基于五次b样条的时间分数型Kuramoto-Sivashinsky方程的改进Atangana-Baleanu Caputo算子

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Komal Deswal, Renu Choudhary, Devendra Kumar
{"title":"基于五次b样条的时间分数型Kuramoto-Sivashinsky方程的改进Atangana-Baleanu Caputo算子","authors":"Komal Deswal, Renu Choudhary, Devendra Kumar","doi":"10.1115/1.4063554","DOIUrl":null,"url":null,"abstract":"Abstract A novel numerical scheme for the time-fractional Kuramoto-Sivashinsky equation is presented in this article. A modification of the Atangana-Baleanu Caputo derivative known as the modified Atangana-Baleanu Caputo operator is introduced for the time-fractional derivative. A Taylor series-based formula is used to derive a second-order accurate approximation to the modified Atangana-Baleanu Caputo derivative. A linear combination of the quintic $B$-spline basis functions is used to approximate the functions in spatial direction. Moreover, through rigorous analysis, it has been proved that the present scheme is unconditionally stable and convergent. Finally, two test problems are solved numerically to demonstrate the proposed method's superconvergence and accuracy.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"54 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Atangana-Baleanu Caputo Operator for Time-Fractional Kuramoto-Sivashinsky Equation via Quintic B-Splines\",\"authors\":\"Komal Deswal, Renu Choudhary, Devendra Kumar\",\"doi\":\"10.1115/1.4063554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A novel numerical scheme for the time-fractional Kuramoto-Sivashinsky equation is presented in this article. A modification of the Atangana-Baleanu Caputo derivative known as the modified Atangana-Baleanu Caputo operator is introduced for the time-fractional derivative. A Taylor series-based formula is used to derive a second-order accurate approximation to the modified Atangana-Baleanu Caputo derivative. A linear combination of the quintic $B$-spline basis functions is used to approximate the functions in spatial direction. Moreover, through rigorous analysis, it has been proved that the present scheme is unconditionally stable and convergent. Finally, two test problems are solved numerically to demonstrate the proposed method's superconvergence and accuracy.\",\"PeriodicalId\":54858,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063554\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的时间分数型Kuramoto-Sivashinsky方程的数值格式。对时间分数阶导数引入了Atangana-Baleanu Caputo算子的一种修正,称为修正Atangana-Baleanu Caputo算子。利用基于泰勒级数的公式,导出了修正Atangana-Baleanu Caputo导数的二阶精确近似。利用五次B样条基函数的线性组合在空间方向上逼近函数。此外,通过严密的分析,证明了该方案是无条件稳定和收敛的。最后,对两个测试问题进行了数值求解,验证了该方法的超收敛性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Atangana-Baleanu Caputo Operator for Time-Fractional Kuramoto-Sivashinsky Equation via Quintic B-Splines
Abstract A novel numerical scheme for the time-fractional Kuramoto-Sivashinsky equation is presented in this article. A modification of the Atangana-Baleanu Caputo derivative known as the modified Atangana-Baleanu Caputo operator is introduced for the time-fractional derivative. A Taylor series-based formula is used to derive a second-order accurate approximation to the modified Atangana-Baleanu Caputo derivative. A linear combination of the quintic $B$-spline basis functions is used to approximate the functions in spatial direction. Moreover, through rigorous analysis, it has been proved that the present scheme is unconditionally stable and convergent. Finally, two test problems are solved numerically to demonstrate the proposed method's superconvergence and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信