{"title":"分段反射太阳能聚光器特性分析与实验研究","authors":"Qian Zhang, Song Chen, Bin Yuan, Lei Huang","doi":"10.1680/jener.23.00016","DOIUrl":null,"url":null,"abstract":"In this paper, a segmented specular reflection solar concentrator is proposed. Many mirrors are arranged in the same plane, and all the reflected rays fall on the cylindrical focal surface. The glass mirrors are placed in different positions, tilt angles and widths, and reflect light without blocking each other. Through the theoretical analysis of this type of concentrating system, in the same space span, with the increase of the installation height of the cylindrical focal surface, the concentrating ratio and area utilization rate gradually increase. The area utilization ratio is related to the ratio of mirror installation span and receiver height, and the concentrating ratio is linear to the number of mirrors. Through photothermal experimental analysis, the size of liquid flow in the pipeline has basically no influence on the photothermal conversion efficiency of the concentrator system. The greater the radiation intensity received of the heat collecting tube, the higher the heat collection efficiency of the solar collecting system. As the effective heat collection length gradually decreases, the ambient temperature gradually decreases, and the heat dissipation of the collector tube increases, the heat collection efficiency decreases significantly.","PeriodicalId":48776,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Energy","volume":"47 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic analysis and experimental study of a segmented reflection solar concentrator\",\"authors\":\"Qian Zhang, Song Chen, Bin Yuan, Lei Huang\",\"doi\":\"10.1680/jener.23.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a segmented specular reflection solar concentrator is proposed. Many mirrors are arranged in the same plane, and all the reflected rays fall on the cylindrical focal surface. The glass mirrors are placed in different positions, tilt angles and widths, and reflect light without blocking each other. Through the theoretical analysis of this type of concentrating system, in the same space span, with the increase of the installation height of the cylindrical focal surface, the concentrating ratio and area utilization rate gradually increase. The area utilization ratio is related to the ratio of mirror installation span and receiver height, and the concentrating ratio is linear to the number of mirrors. Through photothermal experimental analysis, the size of liquid flow in the pipeline has basically no influence on the photothermal conversion efficiency of the concentrator system. The greater the radiation intensity received of the heat collecting tube, the higher the heat collection efficiency of the solar collecting system. As the effective heat collection length gradually decreases, the ambient temperature gradually decreases, and the heat dissipation of the collector tube increases, the heat collection efficiency decreases significantly.\",\"PeriodicalId\":48776,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jener.23.00016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jener.23.00016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Characteristic analysis and experimental study of a segmented reflection solar concentrator
In this paper, a segmented specular reflection solar concentrator is proposed. Many mirrors are arranged in the same plane, and all the reflected rays fall on the cylindrical focal surface. The glass mirrors are placed in different positions, tilt angles and widths, and reflect light without blocking each other. Through the theoretical analysis of this type of concentrating system, in the same space span, with the increase of the installation height of the cylindrical focal surface, the concentrating ratio and area utilization rate gradually increase. The area utilization ratio is related to the ratio of mirror installation span and receiver height, and the concentrating ratio is linear to the number of mirrors. Through photothermal experimental analysis, the size of liquid flow in the pipeline has basically no influence on the photothermal conversion efficiency of the concentrator system. The greater the radiation intensity received of the heat collecting tube, the higher the heat collection efficiency of the solar collecting system. As the effective heat collection length gradually decreases, the ambient temperature gradually decreases, and the heat dissipation of the collector tube increases, the heat collection efficiency decreases significantly.
期刊介绍:
Energy addresses the challenges of energy engineering in the 21st century. The journal publishes groundbreaking papers on energy provision by leading figures in industry and academia and provides a unique forum for discussion on everything from underground coal gasification to the practical implications of biofuels. The journal is a key resource for engineers and researchers working to meet the challenges of energy engineering. Topics addressed include: development of sustainable energy policy, energy efficiency in buildings, infrastructure and transport systems, renewable energy sources, operation and decommissioning of projects, and energy conservation.