拟painlev方程的hamilton结构

Galina Filipuk, Alexander Stokes
{"title":"拟painlev<s:1>方程的hamilton结构","authors":"Galina Filipuk, Alexander Stokes","doi":"10.1088/1751-8121/ad0b5c","DOIUrl":null,"url":null,"abstract":"Abstract We describe the quasi-Painlevé property of a system of ordinary differential equations in terms of a global Hamiltonian structure on an analogue of Okamoto’s space of initial conditions for the Painlevé equations. In the quasi-Painlevé case, the Hamiltonian structure is with respect to a two-form which is allowed to have certain zeroes on the surfaces forming the space of initial conditions, as opposed to holomorphic symplectic forms in the case of the Painlevé equations. We provide the spaces and Hamiltonian structures for several known quasi-Painlevé equations and also for a new example, which we prove to have the quasi-Painlevé property via the Hamiltonian structure and construction of an appropriate auxiliary function which remains bounded on solutions.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hamiltonian structures of quasi-Painlevé equations\",\"authors\":\"Galina Filipuk, Alexander Stokes\",\"doi\":\"10.1088/1751-8121/ad0b5c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe the quasi-Painlevé property of a system of ordinary differential equations in terms of a global Hamiltonian structure on an analogue of Okamoto’s space of initial conditions for the Painlevé equations. In the quasi-Painlevé case, the Hamiltonian structure is with respect to a two-form which is allowed to have certain zeroes on the surfaces forming the space of initial conditions, as opposed to holomorphic symplectic forms in the case of the Painlevé equations. We provide the spaces and Hamiltonian structures for several known quasi-Painlevé equations and also for a new example, which we prove to have the quasi-Painlevé property via the Hamiltonian structure and construction of an appropriate auxiliary function which remains bounded on solutions.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad0b5c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0b5c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文用全局哈密顿结构描述了一类常微分方程系统的拟painlev性质,该结构在painlev方程初始条件的Okamoto空间的模拟上。在拟painlev情况下,哈密顿结构是关于两种形式的,这种形式允许在形成初始条件空间的曲面上有一定的零,与painlev方程的全纯辛形式相反。我们给出了几个已知的拟painlev方程的空间和哈密顿结构,并给出了一个新的例子,通过哈密顿结构和构造一个对解有界的辅助函数证明了该方程具有拟painlev性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hamiltonian structures of quasi-Painlevé equations
Abstract We describe the quasi-Painlevé property of a system of ordinary differential equations in terms of a global Hamiltonian structure on an analogue of Okamoto’s space of initial conditions for the Painlevé equations. In the quasi-Painlevé case, the Hamiltonian structure is with respect to a two-form which is allowed to have certain zeroes on the surfaces forming the space of initial conditions, as opposed to holomorphic symplectic forms in the case of the Painlevé equations. We provide the spaces and Hamiltonian structures for several known quasi-Painlevé equations and also for a new example, which we prove to have the quasi-Painlevé property via the Hamiltonian structure and construction of an appropriate auxiliary function which remains bounded on solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信