{"title":"有向环的特征熵与谱","authors":"Yan Sun, Jiu Chang Pei, Jian Fu Chen, Zhu Cun","doi":"10.4018/ijgcms.333480","DOIUrl":null,"url":null,"abstract":"The directed cycles form a foundational structure within a network model. By analyzing the in-degree characteristic polynomial of three kinds of matrices of the directed cycles, the authors obtain the eigenvalues of the adjacency matrix , the Laplacian matrix , and the signless Laplacian matrix . This study investigates the eigenvalues spectrum of these three types of matrices for directed cycles and introduces an eigenvalue-based entropy calculated from the real part of the eigenvalues. The computer simulation reveals interesting characteristics on the spectrum of the signless Laplacian. The concept of eigenvalue-based entropy holds promise for enhancing our understanding of graph neural networks and more applications of social networks.","PeriodicalId":44126,"journal":{"name":"International Journal of Gaming and Computer-Mediated Simulations","volume":" 32","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Eigenvalues-Based Entropy and Spectrum of the Directed Cycles\",\"authors\":\"Yan Sun, Jiu Chang Pei, Jian Fu Chen, Zhu Cun\",\"doi\":\"10.4018/ijgcms.333480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The directed cycles form a foundational structure within a network model. By analyzing the in-degree characteristic polynomial of three kinds of matrices of the directed cycles, the authors obtain the eigenvalues of the adjacency matrix , the Laplacian matrix , and the signless Laplacian matrix . This study investigates the eigenvalues spectrum of these three types of matrices for directed cycles and introduces an eigenvalue-based entropy calculated from the real part of the eigenvalues. The computer simulation reveals interesting characteristics on the spectrum of the signless Laplacian. The concept of eigenvalue-based entropy holds promise for enhancing our understanding of graph neural networks and more applications of social networks.\",\"PeriodicalId\":44126,\"journal\":{\"name\":\"International Journal of Gaming and Computer-Mediated Simulations\",\"volume\":\" 32\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Gaming and Computer-Mediated Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijgcms.333480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Gaming and Computer-Mediated Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijgcms.333480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Eigenvalues-Based Entropy and Spectrum of the Directed Cycles
The directed cycles form a foundational structure within a network model. By analyzing the in-degree characteristic polynomial of three kinds of matrices of the directed cycles, the authors obtain the eigenvalues of the adjacency matrix , the Laplacian matrix , and the signless Laplacian matrix . This study investigates the eigenvalues spectrum of these three types of matrices for directed cycles and introduces an eigenvalue-based entropy calculated from the real part of the eigenvalues. The computer simulation reveals interesting characteristics on the spectrum of the signless Laplacian. The concept of eigenvalue-based entropy holds promise for enhancing our understanding of graph neural networks and more applications of social networks.