箍上的模块结构

IF 0.7 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
R. A. Borzooei, M. Sabetkish, M. Aaly Kologani
{"title":"箍上的模块结构","authors":"R. A. Borzooei, M. Sabetkish, M. Aaly Kologani","doi":"10.1142/s1793005724500339","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the theory of modules on hoops and introduce two concepts of modules on hoops and provide special examples and interesting results. Both concepts are correct and logical. The first concept is very close to the definition of module in abstract algebra. In this case, we investigate some important results in modules such as sub-modules and quotient structures. But if we want to investigate the relationship between hoop-modules and other modules on logical algebraic structures such as [Formula: see text]-modules and [Formula: see text]-modules, we need to define the second definition of hoop-modules. In this case, we can get that a [Formula: see text]-modules and an [Formula: see text]-module from any hoop-module.","PeriodicalId":44835,"journal":{"name":"New Mathematics and Natural Computation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Module Structures on Hoops\",\"authors\":\"R. A. Borzooei, M. Sabetkish, M. Aaly Kologani\",\"doi\":\"10.1142/s1793005724500339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply the theory of modules on hoops and introduce two concepts of modules on hoops and provide special examples and interesting results. Both concepts are correct and logical. The first concept is very close to the definition of module in abstract algebra. In this case, we investigate some important results in modules such as sub-modules and quotient structures. But if we want to investigate the relationship between hoop-modules and other modules on logical algebraic structures such as [Formula: see text]-modules and [Formula: see text]-modules, we need to define the second definition of hoop-modules. In this case, we can get that a [Formula: see text]-modules and an [Formula: see text]-module from any hoop-module.\",\"PeriodicalId\":44835,\"journal\":{\"name\":\"New Mathematics and Natural Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Mathematics and Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793005724500339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Mathematics and Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793005724500339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文运用了模组理论,引入了模组的两个概念,并给出了一些特殊的例子和有趣的结果。这两个概念都是正确和合乎逻辑的。第一个概念与抽象代数中模的定义非常接近。在这种情况下,我们研究了子模块和商结构等模块的一些重要结果。但是,如果我们想要研究箍模与逻辑代数结构(如[公式:见文]-模块和[公式:见文]-模块)上的其他模块之间的关系,我们需要定义箍模的第二个定义。在这种情况下,我们可以从任何hoop-module中得到一个[Formula: see text]-modules和一个[Formula: see text]-module。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Module Structures on Hoops
In this paper, we apply the theory of modules on hoops and introduce two concepts of modules on hoops and provide special examples and interesting results. Both concepts are correct and logical. The first concept is very close to the definition of module in abstract algebra. In this case, we investigate some important results in modules such as sub-modules and quotient structures. But if we want to investigate the relationship between hoop-modules and other modules on logical algebraic structures such as [Formula: see text]-modules and [Formula: see text]-modules, we need to define the second definition of hoop-modules. In this case, we can get that a [Formula: see text]-modules and an [Formula: see text]-module from any hoop-module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Mathematics and Natural Computation
New Mathematics and Natural Computation MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.70
自引率
10.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信