dna编码金属纳米簇的制备及应用研究进展

Q3 Chemistry
Chemistry Pub Date : 2023-11-10 DOI:10.3390/chemistry5040160
Fang Yin, Jiangtao Ren, Erkang Wang
{"title":"dna编码金属纳米簇的制备及应用研究进展","authors":"Fang Yin, Jiangtao Ren, Erkang Wang","doi":"10.3390/chemistry5040160","DOIUrl":null,"url":null,"abstract":"DNA as an intriguing organic ligand has been widely employed for synthesizing metal nanoclusters and engineering their properties. This review aims to present recent progress on DNA-encoded metal (Ag, Cu, Au, Ag/Pt, Cu/Ag, etc.) nanoclusters (DNA-MNCs), focusing on their applications in the fields of analysis, logic operation, and therapy based on properties including fluorescence, electrochemiluminescence (ECL), and antibacterial and catalytic activity, and summarizes the attractive features of the latest research. The key points are briefly described as follows. (1) Analytical systems have been constructed based on fluorescence regulation, and nuclease-assisted and enzyme-free amplification strategies have been extensively adopted with fluorescent DNA-MNCs for amplified analysis. (2) DNA-MNCs may play more than one role (emitter, quencher, or catalyst) in ECL-based analytical systems. (3) Apart from antibacterial activity, DNA-MNCs also possess apparent catalytic capability, such as enzyme-like activity (i.e., nanozymes), which has been applied in colorimetric systems. (4) Reversibly regulating the catalytic activity of DNA-MNCs has been attained with DNA systems. It is believed that through in-depth investigation of the relationship between atomic structure and property, more novel DNA-MNCs will be explored and applied in the future.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":" 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters\",\"authors\":\"Fang Yin, Jiangtao Ren, Erkang Wang\",\"doi\":\"10.3390/chemistry5040160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA as an intriguing organic ligand has been widely employed for synthesizing metal nanoclusters and engineering their properties. This review aims to present recent progress on DNA-encoded metal (Ag, Cu, Au, Ag/Pt, Cu/Ag, etc.) nanoclusters (DNA-MNCs), focusing on their applications in the fields of analysis, logic operation, and therapy based on properties including fluorescence, electrochemiluminescence (ECL), and antibacterial and catalytic activity, and summarizes the attractive features of the latest research. The key points are briefly described as follows. (1) Analytical systems have been constructed based on fluorescence regulation, and nuclease-assisted and enzyme-free amplification strategies have been extensively adopted with fluorescent DNA-MNCs for amplified analysis. (2) DNA-MNCs may play more than one role (emitter, quencher, or catalyst) in ECL-based analytical systems. (3) Apart from antibacterial activity, DNA-MNCs also possess apparent catalytic capability, such as enzyme-like activity (i.e., nanozymes), which has been applied in colorimetric systems. (4) Reversibly regulating the catalytic activity of DNA-MNCs has been attained with DNA systems. It is believed that through in-depth investigation of the relationship between atomic structure and property, more novel DNA-MNCs will be explored and applied in the future.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\" 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5040160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemistry5040160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

DNA作为一种有趣的有机配体,已被广泛应用于金属纳米团簇的合成及其性质的工程设计。本文综述了dna编码金属(Ag、Cu、Au、Ag/Pt、Cu/Ag等)纳米簇(DNA-MNCs)的最新研究进展,重点介绍了DNA-MNCs在分析、逻辑运算和治疗等领域的应用,并从荧光、电化学发光(ECL)、抗菌和催化活性等方面综述了最新研究的亮点。要点简述如下。(1)基于荧光调控的分析系统已经建立,荧光DNA-MNCs广泛采用核酸酶辅助和无酶扩增策略进行扩增分析。(2) DNA-MNCs在基于ecl的分析系统中可能扮演不止一个角色(发射器、淬灭器或催化剂)。(3)除了抗菌活性外,DNA-MNCs还具有明显的催化能力,如酶样活性(即纳米酶),已应用于比色系统。(4) DNA系统已经实现了对DNA- mncs催化活性的可逆调节。相信通过对原子结构与性质关系的深入研究,未来将会有更多新型DNA-MNCs被探索和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters
DNA as an intriguing organic ligand has been widely employed for synthesizing metal nanoclusters and engineering their properties. This review aims to present recent progress on DNA-encoded metal (Ag, Cu, Au, Ag/Pt, Cu/Ag, etc.) nanoclusters (DNA-MNCs), focusing on their applications in the fields of analysis, logic operation, and therapy based on properties including fluorescence, electrochemiluminescence (ECL), and antibacterial and catalytic activity, and summarizes the attractive features of the latest research. The key points are briefly described as follows. (1) Analytical systems have been constructed based on fluorescence regulation, and nuclease-assisted and enzyme-free amplification strategies have been extensively adopted with fluorescent DNA-MNCs for amplified analysis. (2) DNA-MNCs may play more than one role (emitter, quencher, or catalyst) in ECL-based analytical systems. (3) Apart from antibacterial activity, DNA-MNCs also possess apparent catalytic capability, such as enzyme-like activity (i.e., nanozymes), which has been applied in colorimetric systems. (4) Reversibly regulating the catalytic activity of DNA-MNCs has been attained with DNA systems. It is believed that through in-depth investigation of the relationship between atomic structure and property, more novel DNA-MNCs will be explored and applied in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信