{"title":"方形蜂窝芯夹芯板的自由振动、屈曲和静力分析","authors":"Amir Arabzadeh, Saeid Sarrami, Mojtaba Azhari","doi":"10.1142/s0219455424501773","DOIUrl":null,"url":null,"abstract":"Meshless methods are a relatively modern approach that has garnered significant interest in analyzing and investigating complex structural problems thanks to distinctive features such as high accuracy, flexibility, rapid calculation speed, and cost–effectiveness. In the present study, the element-free Galerkin method is employed as a meshless approach, wherein a set of arbitrary nodes is distributed across the problem’s geometry, including its boundaries, to define the problem domain. The Moving Least Squares approximation is also utilized to formulate the shape functions. Given the intricate geometry of the honeycomb core within sandwich panels, the study employs the generalized method to derive the effective mechanical properties of the honeycomb core. Furthermore, to acquire displacement fields and establish relationships for the problem, the classic plate theory and the first-order shear deformation theory are independently applied. These relationships are then formulated using the Galerkin meshless method. Finally, the obtained parameters are evaluated, and the validity of these relationships is confirmed by comparing the results of this study with those presented in existing articles. The outlined procedure has been systematically simulated through a step-by-step MATLAB program. Subsequently, the impact of different boundary conditions, individual layer thicknesses, dimension ratios, and core wall spacing on the panel’s displacement, free-vibration, and buckling behaviors is thoroughly investigated. The obtained results substantiate the efficacy of the utilized methodology, demonstrating a favorable combination of accuracy and convergence rate.","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":" 35","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free Vibration, Buckling, and Static Analysis of Sandwich Panels with a Square Honeycomb Core Using a Meshfree Method\",\"authors\":\"Amir Arabzadeh, Saeid Sarrami, Mojtaba Azhari\",\"doi\":\"10.1142/s0219455424501773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meshless methods are a relatively modern approach that has garnered significant interest in analyzing and investigating complex structural problems thanks to distinctive features such as high accuracy, flexibility, rapid calculation speed, and cost–effectiveness. In the present study, the element-free Galerkin method is employed as a meshless approach, wherein a set of arbitrary nodes is distributed across the problem’s geometry, including its boundaries, to define the problem domain. The Moving Least Squares approximation is also utilized to formulate the shape functions. Given the intricate geometry of the honeycomb core within sandwich panels, the study employs the generalized method to derive the effective mechanical properties of the honeycomb core. Furthermore, to acquire displacement fields and establish relationships for the problem, the classic plate theory and the first-order shear deformation theory are independently applied. These relationships are then formulated using the Galerkin meshless method. Finally, the obtained parameters are evaluated, and the validity of these relationships is confirmed by comparing the results of this study with those presented in existing articles. The outlined procedure has been systematically simulated through a step-by-step MATLAB program. Subsequently, the impact of different boundary conditions, individual layer thicknesses, dimension ratios, and core wall spacing on the panel’s displacement, free-vibration, and buckling behaviors is thoroughly investigated. The obtained results substantiate the efficacy of the utilized methodology, demonstrating a favorable combination of accuracy and convergence rate.\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\" 35\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455424501773\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219455424501773","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Free Vibration, Buckling, and Static Analysis of Sandwich Panels with a Square Honeycomb Core Using a Meshfree Method
Meshless methods are a relatively modern approach that has garnered significant interest in analyzing and investigating complex structural problems thanks to distinctive features such as high accuracy, flexibility, rapid calculation speed, and cost–effectiveness. In the present study, the element-free Galerkin method is employed as a meshless approach, wherein a set of arbitrary nodes is distributed across the problem’s geometry, including its boundaries, to define the problem domain. The Moving Least Squares approximation is also utilized to formulate the shape functions. Given the intricate geometry of the honeycomb core within sandwich panels, the study employs the generalized method to derive the effective mechanical properties of the honeycomb core. Furthermore, to acquire displacement fields and establish relationships for the problem, the classic plate theory and the first-order shear deformation theory are independently applied. These relationships are then formulated using the Galerkin meshless method. Finally, the obtained parameters are evaluated, and the validity of these relationships is confirmed by comparing the results of this study with those presented in existing articles. The outlined procedure has been systematically simulated through a step-by-step MATLAB program. Subsequently, the impact of different boundary conditions, individual layer thicknesses, dimension ratios, and core wall spacing on the panel’s displacement, free-vibration, and buckling behaviors is thoroughly investigated. The obtained results substantiate the efficacy of the utilized methodology, demonstrating a favorable combination of accuracy and convergence rate.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.