B. Fang, S. Liu, Y. Lu, S. Chen, Y. Zhang, C. Zhang, C. Zhang
{"title":"用振动台试验研究土袋垫的动力性能","authors":"B. Fang, S. Liu, Y. Lu, S. Chen, Y. Zhang, C. Zhang, C. Zhang","doi":"10.1680/jgein.23.00074","DOIUrl":null,"url":null,"abstract":"Soilbag cushion is one of the promising base isolation methods to reduce seismic energy transfer from ground to building structure. In this study, a series of shaking table tests were conducted comparatively on foundation models with soilbag cushion and sand cushion to evaluate their dynamic performance. The test results indicate that soilbag cushion could significantly reduce acceleration response and accumulated settlement compared to sand cushion. And the relatively smaller amplitude of dynamic lateral earth pressure measured on contact surface of soilbags within soilbag cushion also indicates its stability during oscillation. The advantages of soilbag cushion for energy dissipation and damping are more easily highlighted under the condition of high-acceleration, high-frequency or high uniformly distributed load. The dynamic performance of soilbag cushion is dependent on embedded depth and thickness. It is most effective for soilbag cushion to be arranged near the rigid footing of building structures; it is suggested that the number of layers of soilbag cushion be controlled on the premise of the designed ratio of the thickness to the width of soilbag cushion ranging from 0.125 to 0.4 for low- or middle-rise masonry buildings in practical engineering.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" 49","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on dynamic performance of soilbag cushion using shaking table tests\",\"authors\":\"B. Fang, S. Liu, Y. Lu, S. Chen, Y. Zhang, C. Zhang, C. Zhang\",\"doi\":\"10.1680/jgein.23.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soilbag cushion is one of the promising base isolation methods to reduce seismic energy transfer from ground to building structure. In this study, a series of shaking table tests were conducted comparatively on foundation models with soilbag cushion and sand cushion to evaluate their dynamic performance. The test results indicate that soilbag cushion could significantly reduce acceleration response and accumulated settlement compared to sand cushion. And the relatively smaller amplitude of dynamic lateral earth pressure measured on contact surface of soilbags within soilbag cushion also indicates its stability during oscillation. The advantages of soilbag cushion for energy dissipation and damping are more easily highlighted under the condition of high-acceleration, high-frequency or high uniformly distributed load. The dynamic performance of soilbag cushion is dependent on embedded depth and thickness. It is most effective for soilbag cushion to be arranged near the rigid footing of building structures; it is suggested that the number of layers of soilbag cushion be controlled on the premise of the designed ratio of the thickness to the width of soilbag cushion ranging from 0.125 to 0.4 for low- or middle-rise masonry buildings in practical engineering.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" 49\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00074\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgein.23.00074","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Investigation on dynamic performance of soilbag cushion using shaking table tests
Soilbag cushion is one of the promising base isolation methods to reduce seismic energy transfer from ground to building structure. In this study, a series of shaking table tests were conducted comparatively on foundation models with soilbag cushion and sand cushion to evaluate their dynamic performance. The test results indicate that soilbag cushion could significantly reduce acceleration response and accumulated settlement compared to sand cushion. And the relatively smaller amplitude of dynamic lateral earth pressure measured on contact surface of soilbags within soilbag cushion also indicates its stability during oscillation. The advantages of soilbag cushion for energy dissipation and damping are more easily highlighted under the condition of high-acceleration, high-frequency or high uniformly distributed load. The dynamic performance of soilbag cushion is dependent on embedded depth and thickness. It is most effective for soilbag cushion to be arranged near the rigid footing of building structures; it is suggested that the number of layers of soilbag cushion be controlled on the premise of the designed ratio of the thickness to the width of soilbag cushion ranging from 0.125 to 0.4 for low- or middle-rise masonry buildings in practical engineering.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.