基于LSTM网络值函数的改进动态规划检测前跟踪算法

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS
Fei Song, Yong Li, Wei Cheng, Limeng Dong
{"title":"基于LSTM网络值函数的改进动态规划检测前跟踪算法","authors":"Fei Song, Yong Li, Wei Cheng, Limeng Dong","doi":"10.1080/21642583.2023.2223227","DOIUrl":null,"url":null,"abstract":"The detection and tracking of small and weak maneuvering radar targets in complex electromagnetic environments is still a difficult problem to effectively solve. To address this problem, this paper proposes a dynamic programming tracking-before-detection method based on long short-term memory (LSTM) network value function(VL-DP-TBD). With the help of the estimated posterior probability provided by the designed LSTM network, the calculation of the posterior value function of the traditional DP-TBD algorithm can be more accurate, and the detection and tracking effect achieved for maneuvering small and weak targets is improved. Utilizing the LSTM network to model the posterior probability estimation of the target motion state, the posterior probability moving features of the maneuvering target can be learned from the noisy input data. By incorporating these posterior probability estimation values into the traditional DP-TBD algorithm, the accuracy and robustness of the calculation of the posterior value function can be enhanced, so that the improved architecture is capable of effectively recursively accumulating the movement trend of the target. Simulation results show that the improved architecture is able to effectively reduce the aggregation effect of a posterior value function and improve the detection and tracking ability for non-cooperative nonlinear maneuvering dim small target.AbbreviationsLSTM: Long short-term memory; DP-TBD: Dynamic programming-based tracking before detection; DBT: Detection before tracking; TBD: Tracking before detection; HT-TBD: Tracking-before-detection algorithm based on the Hough transform; PF-TBD: Tracking-before-detection algorithm based on particle filtering; RFS-TBD: Tracking-before-detection algorithm based on random finite sets; SNR: Signal-to-noise ratio; DP: Dynamic programming; EVT: Extreme value theory; EVT: Generalized extreme value theory; GLRT: Generalized likelihood ratio detection; KT: Keystone transformation; PGA: Phase gradient autofocusing; CFAR: Constant false-alarm rate; J-CA-CFAR: Joint intensity-spatial CFAR; MF: Merit function; CP-DP-TBD: Candidate plot-based DP-TBD; CIT: Coherent integration time; RNN: Recurrent neural network; CS: Current statistical; Pd: Detection probability; Pt: Tracking probability.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved dynamic programming tracking-before-detection algorithm based on LSTM network value function\",\"authors\":\"Fei Song, Yong Li, Wei Cheng, Limeng Dong\",\"doi\":\"10.1080/21642583.2023.2223227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection and tracking of small and weak maneuvering radar targets in complex electromagnetic environments is still a difficult problem to effectively solve. To address this problem, this paper proposes a dynamic programming tracking-before-detection method based on long short-term memory (LSTM) network value function(VL-DP-TBD). With the help of the estimated posterior probability provided by the designed LSTM network, the calculation of the posterior value function of the traditional DP-TBD algorithm can be more accurate, and the detection and tracking effect achieved for maneuvering small and weak targets is improved. Utilizing the LSTM network to model the posterior probability estimation of the target motion state, the posterior probability moving features of the maneuvering target can be learned from the noisy input data. By incorporating these posterior probability estimation values into the traditional DP-TBD algorithm, the accuracy and robustness of the calculation of the posterior value function can be enhanced, so that the improved architecture is capable of effectively recursively accumulating the movement trend of the target. Simulation results show that the improved architecture is able to effectively reduce the aggregation effect of a posterior value function and improve the detection and tracking ability for non-cooperative nonlinear maneuvering dim small target.AbbreviationsLSTM: Long short-term memory; DP-TBD: Dynamic programming-based tracking before detection; DBT: Detection before tracking; TBD: Tracking before detection; HT-TBD: Tracking-before-detection algorithm based on the Hough transform; PF-TBD: Tracking-before-detection algorithm based on particle filtering; RFS-TBD: Tracking-before-detection algorithm based on random finite sets; SNR: Signal-to-noise ratio; DP: Dynamic programming; EVT: Extreme value theory; EVT: Generalized extreme value theory; GLRT: Generalized likelihood ratio detection; KT: Keystone transformation; PGA: Phase gradient autofocusing; CFAR: Constant false-alarm rate; J-CA-CFAR: Joint intensity-spatial CFAR; MF: Merit function; CP-DP-TBD: Candidate plot-based DP-TBD; CIT: Coherent integration time; RNN: Recurrent neural network; CS: Current statistical; Pd: Detection probability; Pt: Tracking probability.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2023.2223227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2023.2223227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

复杂电磁环境下弱小机动雷达目标的检测与跟踪仍然是一个难以有效解决的问题。针对这一问题,本文提出了一种基于长短期记忆(LSTM)网络值函数(VL-DP-TBD)的动态规划检测前跟踪方法。利用所设计的LSTM网络提供的估计后验概率,可以提高传统DP-TBD算法后验值函数的计算精度,提高对机动弱小目标的检测和跟踪效果。利用LSTM网络对目标运动状态的后验概率估计进行建模,可以从噪声输入数据中学习到机动目标的后验概率运动特征。将这些后验概率估计值纳入传统的DP-TBD算法中,可以提高后验值函数计算的准确性和鲁棒性,使改进的体系结构能够有效地递归累积目标的运动趋势。仿真结果表明,改进后的结构能够有效地降低后验值函数的聚集效应,提高对非合作非线性机动弱小目标的检测和跟踪能力。缩写slstm:长短期记忆;DP-TBD:基于动态规划的检测前跟踪;DBT:先检测后跟踪;TBD:检测前跟踪;HT-TBD:基于霍夫变换的检测前跟踪算法;PF-TBD:基于粒子滤波的检测前跟踪算法;RFS-TBD:基于随机有限集的检测前跟踪算法;SNR:信噪比;DP:动态规划;EVT:极值理论;EVT:广义极值理论;GLRT:广义似然比检测;KT: Keystone转型;PGA:相位梯度自动对焦;CFAR:恒虚警率;J-CA-CFAR:关节强度-空间CFAR;MF:价值函数;CP-DP-TBD:候选基于plot的DP-TBD;CIT:相干积分时间;RNN:递归神经网络;CS:当前统计;Pd:检测概率;Pt:跟踪概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved dynamic programming tracking-before-detection algorithm based on LSTM network value function
The detection and tracking of small and weak maneuvering radar targets in complex electromagnetic environments is still a difficult problem to effectively solve. To address this problem, this paper proposes a dynamic programming tracking-before-detection method based on long short-term memory (LSTM) network value function(VL-DP-TBD). With the help of the estimated posterior probability provided by the designed LSTM network, the calculation of the posterior value function of the traditional DP-TBD algorithm can be more accurate, and the detection and tracking effect achieved for maneuvering small and weak targets is improved. Utilizing the LSTM network to model the posterior probability estimation of the target motion state, the posterior probability moving features of the maneuvering target can be learned from the noisy input data. By incorporating these posterior probability estimation values into the traditional DP-TBD algorithm, the accuracy and robustness of the calculation of the posterior value function can be enhanced, so that the improved architecture is capable of effectively recursively accumulating the movement trend of the target. Simulation results show that the improved architecture is able to effectively reduce the aggregation effect of a posterior value function and improve the detection and tracking ability for non-cooperative nonlinear maneuvering dim small target.AbbreviationsLSTM: Long short-term memory; DP-TBD: Dynamic programming-based tracking before detection; DBT: Detection before tracking; TBD: Tracking before detection; HT-TBD: Tracking-before-detection algorithm based on the Hough transform; PF-TBD: Tracking-before-detection algorithm based on particle filtering; RFS-TBD: Tracking-before-detection algorithm based on random finite sets; SNR: Signal-to-noise ratio; DP: Dynamic programming; EVT: Extreme value theory; EVT: Generalized extreme value theory; GLRT: Generalized likelihood ratio detection; KT: Keystone transformation; PGA: Phase gradient autofocusing; CFAR: Constant false-alarm rate; J-CA-CFAR: Joint intensity-spatial CFAR; MF: Merit function; CP-DP-TBD: Candidate plot-based DP-TBD; CIT: Coherent integration time; RNN: Recurrent neural network; CS: Current statistical; Pd: Detection probability; Pt: Tracking probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信