对分离式吉布斯采样器的再考察:改进其算法结构和增强目标分布

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marcelo Pereyra, Luis A. Vargas-Mieles, Konstantinos C. Zygalakis
{"title":"对分离式吉布斯采样器的再考察:改进其算法结构和增强目标分布","authors":"Marcelo Pereyra, Luis A. Vargas-Mieles, Konstantinos C. Zygalakis","doi":"10.1137/22m1506122","DOIUrl":null,"url":null,"abstract":"Developing efficient Bayesian computation algorithms for imaging inverse problems is challenging due to the dimensionality involved and because Bayesian imaging models are often not smooth. Current state-of-the-art methods often address these difficulties by replacing the posterior density with a smooth approximation that is amenable to efficient exploration by using Langevin Markov chain Monte Carlo (MCMC) methods. An alternative approach is based on data augmentation and relaxation, where auxiliary variables are introduced in order to construct an approximate augmented posterior distribution that is amenable to efficient exploration by Gibbs sampling. This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK (ls SK-ROCK), which tightly combines the benefits of the two aforementioned strategies. Additionally, instead of viewing the augmented posterior distribution as an approximation of the original model, we propose to consider it as a generalisation of this model. Following on from this, we empirically show that there is a range of values for the relaxation parameter for which the accuracy of the model improves, and propose a stochastic optimisation algorithm to automatically identify the optimal amount of relaxation for a given problem. In this regime, ls SK-ROCK converges faster than competing approaches from the state of the art, and also achieves better accuracy since the underlying augmented Bayesian model has a higher Bayesian evidence. The proposed methodology is demonstrated with a range of numerical experiments related to image deblurring and inpainting, as well as with comparisons with alternative approaches from the state of the art. An open-source implementation of the proposed MCMC methods is available from https://github.com/luisvargasmieles/ls-MCMC.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Split Gibbs Sampler Revisited: Improvements to Its Algorithmic Structure and Augmented Target Distribution\",\"authors\":\"Marcelo Pereyra, Luis A. Vargas-Mieles, Konstantinos C. Zygalakis\",\"doi\":\"10.1137/22m1506122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing efficient Bayesian computation algorithms for imaging inverse problems is challenging due to the dimensionality involved and because Bayesian imaging models are often not smooth. Current state-of-the-art methods often address these difficulties by replacing the posterior density with a smooth approximation that is amenable to efficient exploration by using Langevin Markov chain Monte Carlo (MCMC) methods. An alternative approach is based on data augmentation and relaxation, where auxiliary variables are introduced in order to construct an approximate augmented posterior distribution that is amenable to efficient exploration by Gibbs sampling. This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK (ls SK-ROCK), which tightly combines the benefits of the two aforementioned strategies. Additionally, instead of viewing the augmented posterior distribution as an approximation of the original model, we propose to consider it as a generalisation of this model. Following on from this, we empirically show that there is a range of values for the relaxation parameter for which the accuracy of the model improves, and propose a stochastic optimisation algorithm to automatically identify the optimal amount of relaxation for a given problem. In this regime, ls SK-ROCK converges faster than competing approaches from the state of the art, and also achieves better accuracy since the underlying augmented Bayesian model has a higher Bayesian evidence. The proposed methodology is demonstrated with a range of numerical experiments related to image deblurring and inpainting, as well as with comparisons with alternative approaches from the state of the art. An open-source implementation of the proposed MCMC methods is available from https://github.com/luisvargasmieles/ls-MCMC.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1506122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1506122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Split Gibbs Sampler Revisited: Improvements to Its Algorithmic Structure and Augmented Target Distribution
Developing efficient Bayesian computation algorithms for imaging inverse problems is challenging due to the dimensionality involved and because Bayesian imaging models are often not smooth. Current state-of-the-art methods often address these difficulties by replacing the posterior density with a smooth approximation that is amenable to efficient exploration by using Langevin Markov chain Monte Carlo (MCMC) methods. An alternative approach is based on data augmentation and relaxation, where auxiliary variables are introduced in order to construct an approximate augmented posterior distribution that is amenable to efficient exploration by Gibbs sampling. This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK (ls SK-ROCK), which tightly combines the benefits of the two aforementioned strategies. Additionally, instead of viewing the augmented posterior distribution as an approximation of the original model, we propose to consider it as a generalisation of this model. Following on from this, we empirically show that there is a range of values for the relaxation parameter for which the accuracy of the model improves, and propose a stochastic optimisation algorithm to automatically identify the optimal amount of relaxation for a given problem. In this regime, ls SK-ROCK converges faster than competing approaches from the state of the art, and also achieves better accuracy since the underlying augmented Bayesian model has a higher Bayesian evidence. The proposed methodology is demonstrated with a range of numerical experiments related to image deblurring and inpainting, as well as with comparisons with alternative approaches from the state of the art. An open-source implementation of the proposed MCMC methods is available from https://github.com/luisvargasmieles/ls-MCMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信