Mamush Tekle Assfaw, Bogale Gebremariam Neka, Elias Gebeyehu Ayele
{"title":"埃塞俄比亚中阿瓦什亚盆地Kessem流域气候变化对河流响应的模拟","authors":"Mamush Tekle Assfaw, Bogale Gebremariam Neka, Elias Gebeyehu Ayele","doi":"10.2166/wcc.2023.541","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we examined how future climate change will affect streamflow responses in the Kessem watershed. Climate variables from SSP2-4.5 and SSP5-8.5 emission scenarios were extracted from GCMs for the 2040s (2031–2060) and 2070s (2061–2090). The bias-corrected precipitation and temperature were converted into streamflow using a calibrated SWAT model. The simulated output of the future streamflow for the periods 2040s and 2070s was compared with the base period (1992–2020) and presented as percentage changes. During calibration and validation, the SWAT model showed Nash–Sutcliffe efficiency (NSE) values of 0.79 and 0.77, as well as coefficient of determination (R2) values of 0.8 and 0.79, demonstrating its capability of simulating streamflow. The annual mean maximum and minimum temperatures are predicted to increase, with a pronounced increase in the minimum temperature for the mid-term and long-term futures under both emission scenarios. As we approach the end of the century, we see an increase in annual mean rainfall and streamflow under the SSP5-8.5 emission scenario. The increment in annual mean rainfall (streamflow) is expected to be 3% (12.5%) and 23% (48.8%) for the 2040s and 2070s, respectively, under the SSP5-8.5 emission scenario.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the impact of climate change on streamflow responses in the Kessem watershed, Middle Awash sub-basin, Ethiopia\",\"authors\":\"Mamush Tekle Assfaw, Bogale Gebremariam Neka, Elias Gebeyehu Ayele\",\"doi\":\"10.2166/wcc.2023.541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we examined how future climate change will affect streamflow responses in the Kessem watershed. Climate variables from SSP2-4.5 and SSP5-8.5 emission scenarios were extracted from GCMs for the 2040s (2031–2060) and 2070s (2061–2090). The bias-corrected precipitation and temperature were converted into streamflow using a calibrated SWAT model. The simulated output of the future streamflow for the periods 2040s and 2070s was compared with the base period (1992–2020) and presented as percentage changes. During calibration and validation, the SWAT model showed Nash–Sutcliffe efficiency (NSE) values of 0.79 and 0.77, as well as coefficient of determination (R2) values of 0.8 and 0.79, demonstrating its capability of simulating streamflow. The annual mean maximum and minimum temperatures are predicted to increase, with a pronounced increase in the minimum temperature for the mid-term and long-term futures under both emission scenarios. As we approach the end of the century, we see an increase in annual mean rainfall and streamflow under the SSP5-8.5 emission scenario. The increment in annual mean rainfall (streamflow) is expected to be 3% (12.5%) and 23% (48.8%) for the 2040s and 2070s, respectively, under the SSP5-8.5 emission scenario.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.541\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.541","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Modeling the impact of climate change on streamflow responses in the Kessem watershed, Middle Awash sub-basin, Ethiopia
Abstract In this study, we examined how future climate change will affect streamflow responses in the Kessem watershed. Climate variables from SSP2-4.5 and SSP5-8.5 emission scenarios were extracted from GCMs for the 2040s (2031–2060) and 2070s (2061–2090). The bias-corrected precipitation and temperature were converted into streamflow using a calibrated SWAT model. The simulated output of the future streamflow for the periods 2040s and 2070s was compared with the base period (1992–2020) and presented as percentage changes. During calibration and validation, the SWAT model showed Nash–Sutcliffe efficiency (NSE) values of 0.79 and 0.77, as well as coefficient of determination (R2) values of 0.8 and 0.79, demonstrating its capability of simulating streamflow. The annual mean maximum and minimum temperatures are predicted to increase, with a pronounced increase in the minimum temperature for the mid-term and long-term futures under both emission scenarios. As we approach the end of the century, we see an increase in annual mean rainfall and streamflow under the SSP5-8.5 emission scenario. The increment in annual mean rainfall (streamflow) is expected to be 3% (12.5%) and 23% (48.8%) for the 2040s and 2070s, respectively, under the SSP5-8.5 emission scenario.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.