具有多非线性源的非线性过滤问题解的性质

A l i m o v Akram Abdirashidovich
{"title":"具有多非线性源的非线性过滤问题解的性质","authors":"A l i m o v Akram Abdirashidovich","doi":"10.59251/2181-1296.2023.v1.1.1873","DOIUrl":null,"url":null,"abstract":"In this work, we studied the conditions for global solvability and unsolvability of a nonlinear filtration problem with a source and with a nonlinear boundary flow. The critical exponent of the global existence of the solution and the critical exponent of the Fujita type of the problem of nonlinear filtration in an inhomogeneous medium are established. An asymptotic representation of a compactly supported solution is obtained, which makes it possible to carry out a numerical experiment.","PeriodicalId":187524,"journal":{"name":"2022-yil 3-son (133/1) ANIQ FANLAR SERIYASI","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the properties of solutions of a nonlinear filtration problem with a source and multiple nonlinearities\",\"authors\":\"A l i m o v Akram Abdirashidovich\",\"doi\":\"10.59251/2181-1296.2023.v1.1.1873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we studied the conditions for global solvability and unsolvability of a nonlinear filtration problem with a source and with a nonlinear boundary flow. The critical exponent of the global existence of the solution and the critical exponent of the Fujita type of the problem of nonlinear filtration in an inhomogeneous medium are established. An asymptotic representation of a compactly supported solution is obtained, which makes it possible to carry out a numerical experiment.\",\"PeriodicalId\":187524,\"journal\":{\"name\":\"2022-yil 3-son (133/1) ANIQ FANLAR SERIYASI\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022-yil 3-son (133/1) ANIQ FANLAR SERIYASI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59251/2181-1296.2023.v1.1.1873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022-yil 3-son (133/1) ANIQ FANLAR SERIYASI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59251/2181-1296.2023.v1.1.1873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有源和非线性边界流的非线性过滤问题的全局可解性和全局不可解性条件。建立了非均匀介质中非线性滤波问题解的整体存在性的临界指数和Fujita型的临界指数。得到了紧支持解的渐近表示,从而使数值实验成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the properties of solutions of a nonlinear filtration problem with a source and multiple nonlinearities
In this work, we studied the conditions for global solvability and unsolvability of a nonlinear filtration problem with a source and with a nonlinear boundary flow. The critical exponent of the global existence of the solution and the critical exponent of the Fujita type of the problem of nonlinear filtration in an inhomogeneous medium are established. An asymptotic representation of a compactly supported solution is obtained, which makes it possible to carry out a numerical experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信