随机漫步对群体的噪声敏感性

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Itaï Benjamini, Jérémie Brieussel
{"title":"随机漫步对群体的噪声敏感性","authors":"Itaï Benjamini, Jérémie Brieussel","doi":"10.30757/alea.v20-42","DOIUrl":null,"url":null,"abstract":"A random walk on a group is noise sensitive if resampling every step independantly with a small probability results in an almost independant output. We precisely define two notions: $\\ell^1$-noise sensitivity and entropy noise sensitivity. Groups with one of these properties are necessarily Liouville. Homomorphisms to free abelian groups provide an obstruction to $\\ell^1$-noise sensitivity. We also provide examples of $\\ell^1$ and entropy noise sensitive random walks. ","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"7 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noise sensitivity of random walks on groups\",\"authors\":\"Itaï Benjamini, Jérémie Brieussel\",\"doi\":\"10.30757/alea.v20-42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A random walk on a group is noise sensitive if resampling every step independantly with a small probability results in an almost independant output. We precisely define two notions: $\\\\ell^1$-noise sensitivity and entropy noise sensitivity. Groups with one of these properties are necessarily Liouville. Homomorphisms to free abelian groups provide an obstruction to $\\\\ell^1$-noise sensitivity. We also provide examples of $\\\\ell^1$ and entropy noise sensitive random walks. \",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-42\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30757/alea.v20-42","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

如果以小概率独立地对每一步重新采样会产生几乎独立的输出,则对组上的随机漫步是噪声敏感的。我们精确地定义了两个概念:$\ well ^1$-噪声灵敏度和熵噪声灵敏度。具有这些性质之一的群必然是刘维尔群。自由阿贝尔群的同态对$\ell^1$-噪声灵敏度有阻碍作用。我们还提供了$\ well ^1$和熵噪声敏感随机漫步的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise sensitivity of random walks on groups
A random walk on a group is noise sensitive if resampling every step independantly with a small probability results in an almost independant output. We precisely define two notions: $\ell^1$-noise sensitivity and entropy noise sensitivity. Groups with one of these properties are necessarily Liouville. Homomorphisms to free abelian groups provide an obstruction to $\ell^1$-noise sensitivity. We also provide examples of $\ell^1$ and entropy noise sensitive random walks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信