若干矩阵的O(3)-不变量的最小生成集与分离集

Pub Date : 2023-01-01 DOI:10.7153/oam-2023-17-42
Artem A. Lopatin, Ronaldo José Sousa Ferreira
{"title":"若干矩阵的O(3)-不变量的最小生成集与分离集","authors":"Artem A. Lopatin, Ronaldo José Sousa Ferreira","doi":"10.7153/oam-2023-17-42","DOIUrl":null,"url":null,"abstract":"Given an algebra $F[H]^G$ of polynomial invariants of an action of the group $G$ over the vector space $H$, a subset $S$ of $F[H]^G$ is called separating if $S$ separates all orbits that can be separated by $F[H]^G$. A minimal separating set is found for some algebras of matrix invariants of several matrices over an infinite field of arbitrary characteristic different from two in case of the orthogonal group. Namely, we consider the following cases: ","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal generating and separating sets for O(3)-invariants of several matrices\",\"authors\":\"Artem A. Lopatin, Ronaldo José Sousa Ferreira\",\"doi\":\"10.7153/oam-2023-17-42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an algebra $F[H]^G$ of polynomial invariants of an action of the group $G$ over the vector space $H$, a subset $S$ of $F[H]^G$ is called separating if $S$ separates all orbits that can be separated by $F[H]^G$. A minimal separating set is found for some algebras of matrix invariants of several matrices over an infinite field of arbitrary characteristic different from two in case of the orthogonal group. Namely, we consider the following cases: \",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2023-17-42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定向量空间$H$上的群$G$作用的多项式不变量的代数$F[H]^G$,如果$S$分离了所有可以被$F[H]^G$分离的轨道,则$F[H]^G$的子集$S$被称为分离。在正交群的情况下,对任意特征不同于两个的无限域上若干矩阵的矩阵不变量的代数,找到了一个极小分离集。即,我们考虑以下情况:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Minimal generating and separating sets for O(3)-invariants of several matrices
Given an algebra $F[H]^G$ of polynomial invariants of an action of the group $G$ over the vector space $H$, a subset $S$ of $F[H]^G$ is called separating if $S$ separates all orbits that can be separated by $F[H]^G$. A minimal separating set is found for some algebras of matrix invariants of several matrices over an infinite field of arbitrary characteristic different from two in case of the orthogonal group. Namely, we consider the following cases:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信