从Goodwillie-Weiss微积分和Whitney磁盘中嵌入$\mathbb{R}^d$中的障碍物

IF 0.5 4区 数学 Q3 MATHEMATICS
Gregory Arone, Vyacheslav Krushkal
{"title":"从Goodwillie-Weiss微积分和Whitney磁盘中嵌入$\\mathbb{R}^d$中的障碍物","authors":"Gregory Arone, Vyacheslav Krushkal","doi":"10.4310/ajm.2023.v27.n2.a1","DOIUrl":null,"url":null,"abstract":"Given an $m$-dimensional CW complex $K$, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embeddings into a Euclidean space ${\\mathbb R}^d$. For $2$-complexes in ${\\mathbb R}^4$ a geometric analogue is also introduced, based on intersections of Whitney disks and more generally on the intersection theory of Whitney towers developed by Schneiderman and Teichner. The focus in this paper is on the first obstruction beyond the classical embedding obstruction of van Kampen. In this case we show the two approaches give the same result, and also relate it to the Arnold class in the cohomology of configuration spaces. The obstructions are shown to be realized in a family of examples. Conjectures are formulated, relating higher versions of these homotopy-theoretic, geometric and cohomological theories.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":"11 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedding obstructions in $\\\\mathbb{R}^d$ from the Goodwillie–Weiss calculus and Whitney disks\",\"authors\":\"Gregory Arone, Vyacheslav Krushkal\",\"doi\":\"10.4310/ajm.2023.v27.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an $m$-dimensional CW complex $K$, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embeddings into a Euclidean space ${\\\\mathbb R}^d$. For $2$-complexes in ${\\\\mathbb R}^4$ a geometric analogue is also introduced, based on intersections of Whitney disks and more generally on the intersection theory of Whitney towers developed by Schneiderman and Teichner. The focus in this paper is on the first obstruction beyond the classical embedding obstruction of van Kampen. In this case we show the two approaches give the same result, and also relate it to the Arnold class in the cohomology of configuration spaces. The obstructions are shown to be realized in a family of examples. Conjectures are formulated, relating higher versions of these homotopy-theoretic, geometric and cohomological theories.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2023.v27.n2.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ajm.2023.v27.n2.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

给定一个$m$维的连续波复形$K$,我们使用Goodwillie-Weiss塔的一个版本来表述嵌入欧几里得空间${\mathbb R}^d$的阻碍理论。对于${\mathbb R}^4$中的$2$-复合体,还介绍了基于惠特尼圆盘的相交和更一般地基于Schneiderman和Teichner提出的惠特尼塔的相交理论的几何模拟。本文的重点是超越经典的van Kampen嵌入障碍的第一种障碍。在这种情况下,我们证明了这两种方法给出了相同的结果,并将其与构型空间上同调中的Arnold类联系起来。在一系列的例子中显示了障碍物的实现。提出了与这些同伦理论、几何理论和上同调理论的更高版本有关的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding obstructions in $\mathbb{R}^d$ from the Goodwillie–Weiss calculus and Whitney disks
Given an $m$-dimensional CW complex $K$, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embeddings into a Euclidean space ${\mathbb R}^d$. For $2$-complexes in ${\mathbb R}^4$ a geometric analogue is also introduced, based on intersections of Whitney disks and more generally on the intersection theory of Whitney towers developed by Schneiderman and Teichner. The focus in this paper is on the first obstruction beyond the classical embedding obstruction of van Kampen. In this case we show the two approaches give the same result, and also relate it to the Arnold class in the cohomology of configuration spaces. The obstructions are shown to be realized in a family of examples. Conjectures are formulated, relating higher versions of these homotopy-theoretic, geometric and cohomological theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信