{"title":"冯诺依曼代数中的近似等价","authors":"Qihui Li, Don Hadwin, Wenjing Liu","doi":"10.7153/oam-2023-17-01","DOIUrl":null,"url":null,"abstract":"Suppose $\\mathcal{A}$ is a separable unital ASH C*-algebra, $\\mathcal{R}$ is a sigma-finite II$_{\\infty}$ factor von Neumann algebra, and $\\pi,\\rho :\\mathcal{A}\\rightarrow\\mathcal{R}$ are unital $\\ast$-homomorphisms such that, for every $a\\in\\mathcal{A}$, the range projections of $\\pi\\left( a\\right) $ and $\\rho\\left( a\\right) $ are Murray von Neuman equivalent in $\\mathcal{R}% $. We prove that $\\pi$ and $\\rho$ are approximately unitarily equivalent modulo $\\mathcal{K}_{\\mathcal{R}}$, where $\\mathcal{K}_{\\mathcal{R}}$ is the norm closed ideal generated by the finite projections in $\\mathcal{R}$. We also prove a very general result concerning approximate equivalence in arbitrary finite von Neumann algebras.","PeriodicalId":56274,"journal":{"name":"Operators and Matrices","volume":"17 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate equivalence in von Neumann algebras\",\"authors\":\"Qihui Li, Don Hadwin, Wenjing Liu\",\"doi\":\"10.7153/oam-2023-17-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose $\\\\mathcal{A}$ is a separable unital ASH C*-algebra, $\\\\mathcal{R}$ is a sigma-finite II$_{\\\\infty}$ factor von Neumann algebra, and $\\\\pi,\\\\rho :\\\\mathcal{A}\\\\rightarrow\\\\mathcal{R}$ are unital $\\\\ast$-homomorphisms such that, for every $a\\\\in\\\\mathcal{A}$, the range projections of $\\\\pi\\\\left( a\\\\right) $ and $\\\\rho\\\\left( a\\\\right) $ are Murray von Neuman equivalent in $\\\\mathcal{R}% $. We prove that $\\\\pi$ and $\\\\rho$ are approximately unitarily equivalent modulo $\\\\mathcal{K}_{\\\\mathcal{R}}$, where $\\\\mathcal{K}_{\\\\mathcal{R}}$ is the norm closed ideal generated by the finite projections in $\\\\mathcal{R}$. We also prove a very general result concerning approximate equivalence in arbitrary finite von Neumann algebras.\",\"PeriodicalId\":56274,\"journal\":{\"name\":\"Operators and Matrices\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operators and Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2023-17-01\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operators and Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
假设$\mathcal{A}$是一个可分的一元ASH C*-代数,$\mathcal{R}$是一个sigma-finite II$_{\ inty}$因子von Neumann代数,$\pi,\rho:\mathcal{A}\右row\mathcal{R}$是一元$\ast$-同态,使得对于\mathcal{A}$中的每一个$ A \ \, $\pi\左(A \右)$和$\rho\左(A \右)$的范围投影在$\mathcal{R}% $中是Murray von Neumann等价的。证明$\pi$和$\rho$是近似一元等价模$\mathcal{K}_{\mathcal{R}}$,其中$\mathcal{K}_{\mathcal{R}}$是由$\mathcal{R}$中的有限投影生成的范数闭理想。我们还证明了关于任意有限冯诺依曼代数近似等价的一个非常一般的结果。
Suppose $\mathcal{A}$ is a separable unital ASH C*-algebra, $\mathcal{R}$ is a sigma-finite II$_{\infty}$ factor von Neumann algebra, and $\pi,\rho :\mathcal{A}\rightarrow\mathcal{R}$ are unital $\ast$-homomorphisms such that, for every $a\in\mathcal{A}$, the range projections of $\pi\left( a\right) $ and $\rho\left( a\right) $ are Murray von Neuman equivalent in $\mathcal{R}% $. We prove that $\pi$ and $\rho$ are approximately unitarily equivalent modulo $\mathcal{K}_{\mathcal{R}}$, where $\mathcal{K}_{\mathcal{R}}$ is the norm closed ideal generated by the finite projections in $\mathcal{R}$. We also prove a very general result concerning approximate equivalence in arbitrary finite von Neumann algebras.
期刊介绍:
''Operators and Matrices'' (''OaM'') aims towards developing a high standard international journal which will publish top quality research and expository papers in matrix and operator theory and their applications. The journal will publish mainly pure mathematics, but occasionally papers of a more applied nature could be accepted. ''OaM'' will also publish relevant book reviews.
''OaM'' is published quarterly, in March, June, September and December.