{"title":"椭圆曲线局部-全局原理的刚性","authors":"Jacob Mayle","doi":"10.4064/aa230101-29-6","DOIUrl":null,"url":null,"abstract":"We study the rigidity of the local conditions in two well-known local-global principles for elliptic curves over number fields. In particular, we consider a local-global principle for torsion due to Serre and Katz, and one for isogenies due to Sutherland.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rigidity in elliptic curve local-global principles\",\"authors\":\"Jacob Mayle\",\"doi\":\"10.4064/aa230101-29-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the rigidity of the local conditions in two well-known local-global principles for elliptic curves over number fields. In particular, we consider a local-global principle for torsion due to Serre and Katz, and one for isogenies due to Sutherland.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/aa230101-29-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa230101-29-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rigidity in elliptic curve local-global principles
We study the rigidity of the local conditions in two well-known local-global principles for elliptic curves over number fields. In particular, we consider a local-global principle for torsion due to Serre and Katz, and one for isogenies due to Sutherland.