长记忆噪声驱动下随机采样模型最小二乘估计的一致性:更新情况

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Héctor Araya, Natalia Bahamonde, Lisandro Fermín, Tania Roa, Soledad Torres
{"title":"长记忆噪声驱动下随机采样模型最小二乘估计的一致性:更新情况","authors":"Héctor Araya, Natalia Bahamonde, Lisandro Fermín, Tania Roa, Soledad Torres","doi":"10.5705/ss.202020.0457","DOIUrl":null,"url":null,"abstract":"In this study, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"8 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE\",\"authors\":\"Héctor Araya, Natalia Bahamonde, Lisandro Fermín, Tania Roa, Soledad Torres\",\"doi\":\"10.5705/ss.202020.0457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0457\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/ss.202020.0457","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了具有长记忆噪声的随机抽样线性回归模型的最小二乘估计量的强相合性。此外,我们还说明了如何处理时间T = 1之前的随机观测数。仿真研究说明了不同项的行为,以及估计器在不同Hurst参数H值下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE
In this study, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信