关于二次型的Heath-Brown定理的一个改进

Pub Date : 2023-01-01 DOI:10.4213/sm9711e
Andrey Dymov, Sergei Kuksin, Alberto Maiocchi, Sergei Vladuts
{"title":"关于二次型的Heath-Brown定理的一个改进","authors":"Andrey Dymov, Sergei Kuksin, Alberto Maiocchi, Sergei Vladuts","doi":"10.4213/sm9711e","DOIUrl":null,"url":null,"abstract":"In his paper from 1996 on quadratic forms Heath-Brown developed a version of the circle method to count points in the intersection of an unbounded quadric with a lattice of small period, when each point is assigned a weight, and approximated this quantity by the integral of the weight function against a measure on the quadric. The weight function is assumed to be $C_0^\\infty$-smooth and vanish near the singularity of the quadric. In our work we allow the weight function to be finitely smooth, not to vanish at the singularity and have an explicit decay at infinity. The paper uses only elementary number theory and is available to readers with no number-theoretic background. Bibliography: 15 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A refinement of Heath-Brown's theorem on quadratic forms\",\"authors\":\"Andrey Dymov, Sergei Kuksin, Alberto Maiocchi, Sergei Vladuts\",\"doi\":\"10.4213/sm9711e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his paper from 1996 on quadratic forms Heath-Brown developed a version of the circle method to count points in the intersection of an unbounded quadric with a lattice of small period, when each point is assigned a weight, and approximated this quantity by the integral of the weight function against a measure on the quadric. The weight function is assumed to be $C_0^\\\\infty$-smooth and vanish near the singularity of the quadric. In our work we allow the weight function to be finitely smooth, not to vanish at the singularity and have an explicit decay at infinity. The paper uses only elementary number theory and is available to readers with no number-theoretic background. Bibliography: 15 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9711e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9711e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Heath-Brown在1996年关于二次型的论文中,发展了一种圆法的版本,当每个点被赋予一个权值时,可以计算具有小周期格的无界二次型的交点,并通过权函数对二次型上的一个测度的积分来近似计算这个量。假设权函数为$C_0^\infty$ -光滑,并在二次曲线奇点附近消失。在我们的工作中,我们允许权函数是有限光滑的,在奇点处不消失,在无穷远处有显式衰减。本文仅使用初等数论,可供没有数论背景的读者使用。参考书目:15篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A refinement of Heath-Brown's theorem on quadratic forms
In his paper from 1996 on quadratic forms Heath-Brown developed a version of the circle method to count points in the intersection of an unbounded quadric with a lattice of small period, when each point is assigned a weight, and approximated this quantity by the integral of the weight function against a measure on the quadric. The weight function is assumed to be $C_0^\infty$-smooth and vanish near the singularity of the quadric. In our work we allow the weight function to be finitely smooth, not to vanish at the singularity and have an explicit decay at infinity. The paper uses only elementary number theory and is available to readers with no number-theoretic background. Bibliography: 15 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信