{"title":"Keisler-Shelah同构定理和连续统假设","authors":"Mohammad Golshani, Saharon Shelah","doi":"10.4064/fm198-5-2022","DOIUrl":null,"url":null,"abstract":"We show that if for any two elementary equivalent structures $\\mathbf M, \\mathbf N$ of size at most continuum in a countable language, $\\mathbf M^{\\omega }/ \\mathcal U \\simeq \\mathbf N^\\omega / \\mathcal U$ for some ultrafilter $\\mathcal U$ on $\\omega ,$ t","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":"20 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Keisler–Shelah isomorphism theorem and the continuum hypothesis\",\"authors\":\"Mohammad Golshani, Saharon Shelah\",\"doi\":\"10.4064/fm198-5-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if for any two elementary equivalent structures $\\\\mathbf M, \\\\mathbf N$ of size at most continuum in a countable language, $\\\\mathbf M^{\\\\omega }/ \\\\mathcal U \\\\simeq \\\\mathbf N^\\\\omega / \\\\mathcal U$ for some ultrafilter $\\\\mathcal U$ on $\\\\omega ,$ t\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/fm198-5-2022\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/fm198-5-2022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
我们证明了如果对于任意两个基本等效结构$\mathbf M, \mathbf N$在可数语言中最多连续体的大小,$\mathbf M^{\omega }/ \mathcal U \simeq \mathbf N^\omega / \mathcal U$对于某些超过滤器$\mathcal U$在$\omega ,$ t上
The Keisler–Shelah isomorphism theorem and the continuum hypothesis
We show that if for any two elementary equivalent structures $\mathbf M, \mathbf N$ of size at most continuum in a countable language, $\mathbf M^{\omega }/ \mathcal U \simeq \mathbf N^\omega / \mathcal U$ for some ultrafilter $\mathcal U$ on $\omega ,$ t
期刊介绍:
FUNDAMENTA MATHEMATICAE concentrates on papers devoted to
Set Theory,
Mathematical Logic and Foundations of Mathematics,
Topology and its Interactions with Algebra,
Dynamical Systems.