有界区域内热方程解的导数的一个逐点不等式

IF 0.6 Q3 MATHEMATICS
Stefan Steinerberger
{"title":"有界区域内热方程解的导数的一个逐点不等式","authors":"Stefan Steinerberger","doi":"10.1215/00192082-10908733","DOIUrl":null,"url":null,"abstract":"Let $u(t,x)$ be a solution of the heat equation in $\\mathbb{R}^n$. Then, each $k-$th derivative also solves the heat equation and satisfies a maximum principle, the largest $k-$th derivative of $u(t,x)$ cannot be larger than the largest $k-$th derivative of $u(0,x)$. We prove an analogous statement for the solution of the heat equation on bounded domains $\\Omega \\subset \\mathbb{R}^n$ with Dirichlet boundary conditions. As an application, we give a new and fairly elementary proof of the sharp growth of the second derivatives of Laplacian eigenfunction $-\\Delta \\phi_k = \\lambda_k \\phi_k$ with Dirichlet conditions on smooth domains $\\Omega \\subset \\mathbb{R}^n$.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"9 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A pointwise inequality for derivatives of solutions of the heat equation in bounded domains\",\"authors\":\"Stefan Steinerberger\",\"doi\":\"10.1215/00192082-10908733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $u(t,x)$ be a solution of the heat equation in $\\\\mathbb{R}^n$. Then, each $k-$th derivative also solves the heat equation and satisfies a maximum principle, the largest $k-$th derivative of $u(t,x)$ cannot be larger than the largest $k-$th derivative of $u(0,x)$. We prove an analogous statement for the solution of the heat equation on bounded domains $\\\\Omega \\\\subset \\\\mathbb{R}^n$ with Dirichlet boundary conditions. As an application, we give a new and fairly elementary proof of the sharp growth of the second derivatives of Laplacian eigenfunction $-\\\\Delta \\\\phi_k = \\\\lambda_k \\\\phi_k$ with Dirichlet conditions on smooth domains $\\\\Omega \\\\subset \\\\mathbb{R}^n$.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10908733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10908733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$u(t,x)$为$\mathbb{R}^n$中热方程的解。然后,每个$k-$次导数也能解出热方程并满足极大值原则,$u(t,x)$的最大$k-$次导数不能大于$u(0,x)$的最大$k-$次导数。我们用狄利克雷边界条件证明了有界域$\Omega \subset \mathbb{R}^n$上热方程解的一个类似命题。作为应用,我们给出了光滑域$\Omega \subset \mathbb{R}^n$上具有Dirichlet条件的拉普拉斯特征函数$-\Delta \phi_k = \lambda_k \phi_k$二阶导数急剧增长的一个新的相当初等的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pointwise inequality for derivatives of solutions of the heat equation in bounded domains
Let $u(t,x)$ be a solution of the heat equation in $\mathbb{R}^n$. Then, each $k-$th derivative also solves the heat equation and satisfies a maximum principle, the largest $k-$th derivative of $u(t,x)$ cannot be larger than the largest $k-$th derivative of $u(0,x)$. We prove an analogous statement for the solution of the heat equation on bounded domains $\Omega \subset \mathbb{R}^n$ with Dirichlet boundary conditions. As an application, we give a new and fairly elementary proof of the sharp growth of the second derivatives of Laplacian eigenfunction $-\Delta \phi_k = \lambda_k \phi_k$ with Dirichlet conditions on smooth domains $\Omega \subset \mathbb{R}^n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信