Charlotte Wiman, Tessa Harden, Zhixiong Shen, B. Brandon Curry, Joeri B Reinders, R. Edward Beighley, Samuel E Muñoz
{"title":"俄亥俄河下游的大洪水是从淡水沉积物推断出来的","authors":"Charlotte Wiman, Tessa Harden, Zhixiong Shen, B. Brandon Curry, Joeri B Reinders, R. Edward Beighley, Samuel E Muñoz","doi":"10.1177/03091333231208612","DOIUrl":null,"url":null,"abstract":"Slackwater deposits representing past flood events provide a robust means to extend systematic gage records further back in time, place historic floods in a longer-term context, and reduce uncertainties in flood hazard analysis. The identification and application of slackwater deposits in riverine paleoflood hydrology has traditionally been limited to arid bedrock-controlled environments and periglacial environments. In this study, we utilize methods developed in humid alluvial settings and apply them to slackwater deposits, one of the first studies to do so. This novel approach uses sediment texture and geochemistry to distinguish slackwater deposits from in situ material in a temperate alluvial setting. We identify multiple slackwater deposits in two rock shelters situated on bluffs adjacent to the lower Ohio River. Flood age estimates are based on optically stimulated luminescence (OSL) dating, and discharge estimates are based on a 1D HEC-RAS model. The uppermost slackwater deposit at both sites corresponds to the AD 1937 historic flood of record (∼31,400 m 3 /s), while another slackwater deposit identified only at the lower elevation site corresponds to a paleoflood that occurred around AD 1650 with a discharge of ∼23,900 m 3 /s. Our findings imply that the AD 1937 flood represents the largest magnitude flood on the lower Ohio River in at least the last 400 years. Inclusion of the paleoflood into a flood frequency analysis for the Ohio River at Louisville reduces uncertainties in large flood quantiles by ∼50%.","PeriodicalId":49659,"journal":{"name":"Progress in Physical Geography-Earth and Environment","volume":"44 11","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large floods on the lower Ohio River inferred from slackwater deposits\",\"authors\":\"Charlotte Wiman, Tessa Harden, Zhixiong Shen, B. Brandon Curry, Joeri B Reinders, R. Edward Beighley, Samuel E Muñoz\",\"doi\":\"10.1177/03091333231208612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slackwater deposits representing past flood events provide a robust means to extend systematic gage records further back in time, place historic floods in a longer-term context, and reduce uncertainties in flood hazard analysis. The identification and application of slackwater deposits in riverine paleoflood hydrology has traditionally been limited to arid bedrock-controlled environments and periglacial environments. In this study, we utilize methods developed in humid alluvial settings and apply them to slackwater deposits, one of the first studies to do so. This novel approach uses sediment texture and geochemistry to distinguish slackwater deposits from in situ material in a temperate alluvial setting. We identify multiple slackwater deposits in two rock shelters situated on bluffs adjacent to the lower Ohio River. Flood age estimates are based on optically stimulated luminescence (OSL) dating, and discharge estimates are based on a 1D HEC-RAS model. The uppermost slackwater deposit at both sites corresponds to the AD 1937 historic flood of record (∼31,400 m 3 /s), while another slackwater deposit identified only at the lower elevation site corresponds to a paleoflood that occurred around AD 1650 with a discharge of ∼23,900 m 3 /s. Our findings imply that the AD 1937 flood represents the largest magnitude flood on the lower Ohio River in at least the last 400 years. Inclusion of the paleoflood into a flood frequency analysis for the Ohio River at Louisville reduces uncertainties in large flood quantiles by ∼50%.\",\"PeriodicalId\":49659,\"journal\":{\"name\":\"Progress in Physical Geography-Earth and Environment\",\"volume\":\"44 11\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Physical Geography-Earth and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03091333231208612\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Physical Geography-Earth and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03091333231208612","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Large floods on the lower Ohio River inferred from slackwater deposits
Slackwater deposits representing past flood events provide a robust means to extend systematic gage records further back in time, place historic floods in a longer-term context, and reduce uncertainties in flood hazard analysis. The identification and application of slackwater deposits in riverine paleoflood hydrology has traditionally been limited to arid bedrock-controlled environments and periglacial environments. In this study, we utilize methods developed in humid alluvial settings and apply them to slackwater deposits, one of the first studies to do so. This novel approach uses sediment texture and geochemistry to distinguish slackwater deposits from in situ material in a temperate alluvial setting. We identify multiple slackwater deposits in two rock shelters situated on bluffs adjacent to the lower Ohio River. Flood age estimates are based on optically stimulated luminescence (OSL) dating, and discharge estimates are based on a 1D HEC-RAS model. The uppermost slackwater deposit at both sites corresponds to the AD 1937 historic flood of record (∼31,400 m 3 /s), while another slackwater deposit identified only at the lower elevation site corresponds to a paleoflood that occurred around AD 1650 with a discharge of ∼23,900 m 3 /s. Our findings imply that the AD 1937 flood represents the largest magnitude flood on the lower Ohio River in at least the last 400 years. Inclusion of the paleoflood into a flood frequency analysis for the Ohio River at Louisville reduces uncertainties in large flood quantiles by ∼50%.
期刊介绍:
Progress in Physical Geography is a peer-reviewed, international journal, encompassing an interdisciplinary approach incorporating the latest developments and debates within Physical Geography and interrelated fields across the Earth, Biological and Ecological System Sciences.