Iqra Yaqoot, Muhammad Riaz, Ashraf Al-Quran, None Tehreem
{"title":"基于三次直觉模糊信息的多阶段决策分析的新相似度量和TOPSIS方法","authors":"Iqra Yaqoot, Muhammad Riaz, Ashraf Al-Quran, None Tehreem","doi":"10.3233/jifs-232085","DOIUrl":null,"url":null,"abstract":"This research work proposes a novel approach for multi stage decision analysis (MSDA) using innovative concepts of cubic intuitionistic fuzzy set (CIFS) theory. The paper introduces CIF-technique for order preference by similarity to ideal solution (TOPSIS) as a robust method for MSDA problems, particularly for the diagnosis of epilepsy disorders. To achieve this goal, new similarity measures (SMs) are developed for CIFS, including the Cosine angle between two vectors, a new distance measure, and the Cosine function, presented as three different types of Cosine similarity measures. The proposed CIF-TOPSIS approach is found to be suitable for precise value performance ratings and is expected to be a viable approach for case studies in the diagnosis of epilepsy disorders. The efficiency and reliability of the proposed MSDA methods is efficiently carried through numerical examples and comparative analysis.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"46 6","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New similarity measures and TOPSIS method for multi stage decision analysis with cubic intuitionistic fuzzy information\",\"authors\":\"Iqra Yaqoot, Muhammad Riaz, Ashraf Al-Quran, None Tehreem\",\"doi\":\"10.3233/jifs-232085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research work proposes a novel approach for multi stage decision analysis (MSDA) using innovative concepts of cubic intuitionistic fuzzy set (CIFS) theory. The paper introduces CIF-technique for order preference by similarity to ideal solution (TOPSIS) as a robust method for MSDA problems, particularly for the diagnosis of epilepsy disorders. To achieve this goal, new similarity measures (SMs) are developed for CIFS, including the Cosine angle between two vectors, a new distance measure, and the Cosine function, presented as three different types of Cosine similarity measures. The proposed CIF-TOPSIS approach is found to be suitable for precise value performance ratings and is expected to be a viable approach for case studies in the diagnosis of epilepsy disorders. The efficiency and reliability of the proposed MSDA methods is efficiently carried through numerical examples and comparative analysis.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"46 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-232085\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-232085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
New similarity measures and TOPSIS method for multi stage decision analysis with cubic intuitionistic fuzzy information
This research work proposes a novel approach for multi stage decision analysis (MSDA) using innovative concepts of cubic intuitionistic fuzzy set (CIFS) theory. The paper introduces CIF-technique for order preference by similarity to ideal solution (TOPSIS) as a robust method for MSDA problems, particularly for the diagnosis of epilepsy disorders. To achieve this goal, new similarity measures (SMs) are developed for CIFS, including the Cosine angle between two vectors, a new distance measure, and the Cosine function, presented as three different types of Cosine similarity measures. The proposed CIF-TOPSIS approach is found to be suitable for precise value performance ratings and is expected to be a viable approach for case studies in the diagnosis of epilepsy disorders. The efficiency and reliability of the proposed MSDA methods is efficiently carried through numerical examples and comparative analysis.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.