一种基于改进k近邻算法的空间数据库查询方法

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Huili Xia, Feng Xue
{"title":"一种基于改进k近邻算法的空间数据库查询方法","authors":"Huili Xia, Feng Xue","doi":"10.4018/ijdsst.332773","DOIUrl":null,"url":null,"abstract":"Spatial database is a spatial information database and is the core component of geographic information systems (GIS). Aiming at the problem that time complexity of k-nearest neighbor (kNN) querying algorithms are proportionate to scale of training samples, an efficient query method for spatial database based on the Spark framework and the reversed k-nearest neighbor (RkNN) is proposed. Firstly, based on the Spark framework, a two-layer indexing structure based on grid and Voronoi diagram is constructed, and an efficient filtering and a refining processing algorithm are proposed. Secondly, the filtering step of proposed algorithm is used to obtain the candidates, and the refining step is used to remove the candidates. Finally, the candidate sets from different regions are merged to get the final result. Results of experiments on real-world datasets validate that the proposed method has better query performance and better stability and significantly improves the processing speed.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm\",\"authors\":\"Huili Xia, Feng Xue\",\"doi\":\"10.4018/ijdsst.332773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial database is a spatial information database and is the core component of geographic information systems (GIS). Aiming at the problem that time complexity of k-nearest neighbor (kNN) querying algorithms are proportionate to scale of training samples, an efficient query method for spatial database based on the Spark framework and the reversed k-nearest neighbor (RkNN) is proposed. Firstly, based on the Spark framework, a two-layer indexing structure based on grid and Voronoi diagram is constructed, and an efficient filtering and a refining processing algorithm are proposed. Secondly, the filtering step of proposed algorithm is used to obtain the candidates, and the refining step is used to remove the candidates. Finally, the candidate sets from different regions are merged to get the final result. Results of experiments on real-world datasets validate that the proposed method has better query performance and better stability and significantly improves the processing speed.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.332773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.332773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

空间数据库是一种空间信息数据库,是地理信息系统的核心组成部分。针对k近邻(kNN)查询算法的时间复杂度与训练样本规模成正比的问题,提出了一种基于Spark框架和反向k近邻(RkNN)的空间数据库查询方法。首先,基于Spark框架,构建了基于网格和Voronoi图的两层索引结构,并提出了一种高效的过滤和细化处理算法;其次,采用所提算法的滤波步骤获得候选点,采用精炼步骤去除候选点;最后,对不同区域的候选集进行合并,得到最终结果。在实际数据集上的实验结果表明,该方法具有更好的查询性能和稳定性,显著提高了处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm
Spatial database is a spatial information database and is the core component of geographic information systems (GIS). Aiming at the problem that time complexity of k-nearest neighbor (kNN) querying algorithms are proportionate to scale of training samples, an efficient query method for spatial database based on the Spark framework and the reversed k-nearest neighbor (RkNN) is proposed. Firstly, based on the Spark framework, a two-layer indexing structure based on grid and Voronoi diagram is constructed, and an efficient filtering and a refining processing algorithm are proposed. Secondly, the filtering step of proposed algorithm is used to obtain the candidates, and the refining step is used to remove the candidates. Finally, the candidate sets from different regions are merged to get the final result. Results of experiments on real-world datasets validate that the proposed method has better query performance and better stability and significantly improves the processing speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信