{"title":"低能见度环境下的不平衡学习道路碰撞评估:一个主动的多标准决策系统","authors":"Zouhair Elamrani Abou Elassad, Dauha Elamrani Abou Elassad, Hajar Mousannif","doi":"10.3233/ais-230127","DOIUrl":null,"url":null,"abstract":"Road crash prediction is a fundamental key in designing efficient intelligent transportation systems. There has been a pronounced progress in the use of machine learning models for crash events assessment by the transportation safety research community in recent years. However, little attention has been paid so far to evaluating reduced-visibility crash occurrences within a heuristic ensemble system. This study presents a proactive multicriteria decision-making system that can predict crash occurrences based on real-time roadway properties, land zones’ characteristics, vehicle telemetry, driver inputs and weather conditions collected using a desktop driving simulator. A key novelty of this work is implementing a genetic algorithm-based feature selection approach along with ensemble modeling strategies using AdaBoost, XGBoost and RF techniques to establish effective crash predictions. Furthermore, since crash events occur in rare instances tending to be underrepresented in the dataset, an imbalance-learning methodology to overcome the issue was adopted on the basis of several data resampling approaches to increase the predictive performance namely SMOTE, Borderline-SMOTE, SMOTE-Tomek Links and ADASYN strategies. To our knowledge, there has been a limited interest at adopting an ensemble-based imbalance-learning strategy examining the impact of real-time features’ combinations on the prediction of road crash events under reduced visibility settings.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"30 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imbalance-learning road crash assessment under reduced visibility settings: A proactive multicriteria decision-making system\",\"authors\":\"Zouhair Elamrani Abou Elassad, Dauha Elamrani Abou Elassad, Hajar Mousannif\",\"doi\":\"10.3233/ais-230127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road crash prediction is a fundamental key in designing efficient intelligent transportation systems. There has been a pronounced progress in the use of machine learning models for crash events assessment by the transportation safety research community in recent years. However, little attention has been paid so far to evaluating reduced-visibility crash occurrences within a heuristic ensemble system. This study presents a proactive multicriteria decision-making system that can predict crash occurrences based on real-time roadway properties, land zones’ characteristics, vehicle telemetry, driver inputs and weather conditions collected using a desktop driving simulator. A key novelty of this work is implementing a genetic algorithm-based feature selection approach along with ensemble modeling strategies using AdaBoost, XGBoost and RF techniques to establish effective crash predictions. Furthermore, since crash events occur in rare instances tending to be underrepresented in the dataset, an imbalance-learning methodology to overcome the issue was adopted on the basis of several data resampling approaches to increase the predictive performance namely SMOTE, Borderline-SMOTE, SMOTE-Tomek Links and ADASYN strategies. To our knowledge, there has been a limited interest at adopting an ensemble-based imbalance-learning strategy examining the impact of real-time features’ combinations on the prediction of road crash events under reduced visibility settings.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-230127\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-230127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Imbalance-learning road crash assessment under reduced visibility settings: A proactive multicriteria decision-making system
Road crash prediction is a fundamental key in designing efficient intelligent transportation systems. There has been a pronounced progress in the use of machine learning models for crash events assessment by the transportation safety research community in recent years. However, little attention has been paid so far to evaluating reduced-visibility crash occurrences within a heuristic ensemble system. This study presents a proactive multicriteria decision-making system that can predict crash occurrences based on real-time roadway properties, land zones’ characteristics, vehicle telemetry, driver inputs and weather conditions collected using a desktop driving simulator. A key novelty of this work is implementing a genetic algorithm-based feature selection approach along with ensemble modeling strategies using AdaBoost, XGBoost and RF techniques to establish effective crash predictions. Furthermore, since crash events occur in rare instances tending to be underrepresented in the dataset, an imbalance-learning methodology to overcome the issue was adopted on the basis of several data resampling approaches to increase the predictive performance namely SMOTE, Borderline-SMOTE, SMOTE-Tomek Links and ADASYN strategies. To our knowledge, there has been a limited interest at adopting an ensemble-based imbalance-learning strategy examining the impact of real-time features’ combinations on the prediction of road crash events under reduced visibility settings.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.