从抛物线微分同态的轨道读出解析不变量

IF 1.2 2区 数学 Q1 MATHEMATICS
Martin Klimeš, Pavao Mardešić, Goran Radunović, Maja Resman
{"title":"从抛物线微分同态的轨道读出解析不变量","authors":"Martin Klimeš, Pavao Mardešić, Goran Radunović, Maja Resman","doi":"10.2422/2036-2145.202208_022","DOIUrl":null,"url":null,"abstract":"In this paper we study germs of diffeomorphisms in the complex plane. We address the following problem: How to read a diffeomorphism $f$ knowing one of its orbits $\\mathbb{A}$? We solve this problem for parabolic germs. This is done by associating to the orbit ${\\mathbb{A}}$ a function that we call the dynamic theta function $\\Theta_{\\mathbb{A}}$. We prove that the function $\\Theta_{\\mathbb{A}}$ is $2\\pi i\\mathbb{Z}$-resurgent. We show that one can obtain the sectorial Fatou coordinate as a Laplace-type integral transform of the function $\\Theta_{\\mathbb{A}}$. This enables one to read the analytic invariants of a diffeomorphism from the theta function of one of its orbits. We also define a closely related fractal theta function $\\tilde{\\Theta}_{\\mathbb{A}}$, which is inspired by and generalizes the geometric zeta function of a fractal string, and show that it also encodes the analytic invariants of the diffeomorphism.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"1 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reading analytic invariants of parabolic diffeomorphisms from their orbits\",\"authors\":\"Martin Klimeš, Pavao Mardešić, Goran Radunović, Maja Resman\",\"doi\":\"10.2422/2036-2145.202208_022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study germs of diffeomorphisms in the complex plane. We address the following problem: How to read a diffeomorphism $f$ knowing one of its orbits $\\\\mathbb{A}$? We solve this problem for parabolic germs. This is done by associating to the orbit ${\\\\mathbb{A}}$ a function that we call the dynamic theta function $\\\\Theta_{\\\\mathbb{A}}$. We prove that the function $\\\\Theta_{\\\\mathbb{A}}$ is $2\\\\pi i\\\\mathbb{Z}$-resurgent. We show that one can obtain the sectorial Fatou coordinate as a Laplace-type integral transform of the function $\\\\Theta_{\\\\mathbb{A}}$. This enables one to read the analytic invariants of a diffeomorphism from the theta function of one of its orbits. We also define a closely related fractal theta function $\\\\tilde{\\\\Theta}_{\\\\mathbb{A}}$, which is inspired by and generalizes the geometric zeta function of a fractal string, and show that it also encodes the analytic invariants of the diffeomorphism.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202208_022\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202208_022","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reading analytic invariants of parabolic diffeomorphisms from their orbits
In this paper we study germs of diffeomorphisms in the complex plane. We address the following problem: How to read a diffeomorphism $f$ knowing one of its orbits $\mathbb{A}$? We solve this problem for parabolic germs. This is done by associating to the orbit ${\mathbb{A}}$ a function that we call the dynamic theta function $\Theta_{\mathbb{A}}$. We prove that the function $\Theta_{\mathbb{A}}$ is $2\pi i\mathbb{Z}$-resurgent. We show that one can obtain the sectorial Fatou coordinate as a Laplace-type integral transform of the function $\Theta_{\mathbb{A}}$. This enables one to read the analytic invariants of a diffeomorphism from the theta function of one of its orbits. We also define a closely related fractal theta function $\tilde{\Theta}_{\mathbb{A}}$, which is inspired by and generalizes the geometric zeta function of a fractal string, and show that it also encodes the analytic invariants of the diffeomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信