PT-112驱动免疫原性细胞死亡的分子机制

Emma Guilbaud, Takahiro Yamazaki, Maria Congenie, Christina Yim, Tyler Ames, Lorenzo Galluzzi
{"title":"PT-112驱动免疫原性细胞死亡的分子机制","authors":"Emma Guilbaud, Takahiro Yamazaki, Maria Congenie, Christina Yim, Tyler Ames, Lorenzo Galluzzi","doi":"10.1136/jitc-2023-sitc2023.1106","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3> PT-112 is a novel immunogenic small molecule<sup>1</sup> under Phase II clinical development for cancer therapy.<sup>2–8</sup> Besides mediating cytostatic and cytotoxic effects in numerous human and mouse cancer cells, PT-112 elicits various danger signals that are linked to immunogenic cell death (ICD) such as calreticulin exposure, as well as ATP and HMGB1 secretion.<sup>1 9–11</sup> Accordingly, mouse cancer cells succumbing to PT-112 <i>in vitro</i> efficiently protect immunocompetent, tumor-naïve mice from challenge with living cancer cells of the same type.<sup>1 9</sup> Moreover, PT-112 synergizes with PD-1 or PD-L1 blockade to control mouse tumors developing in immunologically competent hosts.<sup>1 9</sup> This work focuses on elucidating the underlying mechanisms of PT-112-induced ICD. <h3>Methods</h3> We harnessed a panel of human and mouse cell lines optionally engineered to lack specific genes involved in mitochondrial apoptosis (namely, <i>Bcl2, Bax</i> and <i>Bak1</i>) coupled with flow cytometry, immunoblotting, RT-PCR, immunofluorescence microscopy and clonogenic assays to determine the impact of reticular and mitochondrial events on the established ability of PT-112 to kill malignant cells in an immunogenic manner.<sup>1</sup> <h3>Results</h3> In line with previous findings,<sup>10–13</sup> PT-112 elicited eukaryotic translation initiation factor 2 subunit alpha (EIF2S1, best known as eIF2α) phosphorylation and mitochondrial dysfunction in malignant cells, a process that was accompanied by the release of interferogenic mitochondrial DNA (mtDNA)<sup>14</sup> in the cytoplasm of PT-112 treated cells, and was differentially affected by the deletion of <i>Bcl2</i>, <i>Bax</i>, <i>Bak1</i>, or <i>Bax</i> plus <i>Bak1</i>. Similarly, the lack of <i>Bcl2</i>, <i>Bax</i>, <i>Bak1</i>, or <i>Bax</i> plus <i>Bak1</i> had a differential impact on the ability of PT-112 to elicit early signs of mitochondrial apoptosis including reactive oxygen species (ROS) generation, mitochondrial transmembrane potential loss and ultimately plasma membrane permeabilization. <h3>Conclusions</h3> ER stress and mitochondrial dysfunction appear to underlie the ability of PT-112 to drive ICD, the integrated stress response, and viral mimicry. This is in line with the well-established connections between ER stress and cytoplasmic nucleic acid sensing, which are pristine mechanisms of antiviral defense in mammalian cells, with the capacity of dying cells to emit immunostimulatory signals.<sup>15</sup> Whether PT-112-driven stress also shifts the antigenic properties of cancer cells as a consequence of the accumulation of non-mutational neoantigens<sup>16</sup> remains to be determined. Despite these and other open questions, PT-112 stands out as a powerful immunotherapeutic agent with promising clinical activity in patients with a variety of tumors<sup>1</sup> under Phase II clinical development for cancer therapy.<sup>2–8</sup> <h3>References</h3> Yamazaki T, <i>et al.</i> PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models. <i>Oncoimmunology</i>. 2020;<b>9</b>(1):1721810 Karp DD, <i>et al</i>. Phase I study of PT-112, a novel pyrophosphate-platinum immunogenic cell death inducer, in advanced solid tumours. <i>EClinicalMedicine</i>. 2022;<b>49</b>:101430. Bryce AH, <i>et al</i>. A phase 1b study of novel immunogenic cell death inducer PT-112 plus PD-L1 inhibitor avelumab in metastatic castrate-resistant prostate cancer (mCRPC) patients. <i>Journal of Clinical Oncology</i>. 2021;<b>39</b>(15_suppl):e17025-e17025. doi:10.1200/JCO.2021.39.15_suppl.e17025 Kourelis T, <i>et al</i>. A Phase I Dose Escalation Study of PT-112 in Patients with Relapsed or Refractory Multiple Myeloma. <i>Blood</i>. 2020;<b>136</b>(Supplement 1):9–10. Karp DD, <i>et al</i>. Phase Ib dose escalation study of novel immunogenic cell death (ICD) inducer PT-112 plus PD-L1 inhibitor avelumab in solid tumours. <i>Annals of Oncology</i>. 2020;<b>31</b>:S708. Imbimbo M, <i>et al</i>. A phase IIa study of the novel immunogenic cell death (ICD) inducer PT-112 plus avelumab (‘PAVE’) in advanced non-small cell lung cancer (NSCLC) patients (pts). <i>Immuno-Oncology and Technology</i>. 2022;<b>16</b>:100237. Swift S, <i>et al</i>. Preliminary efficacy, safety, and immunomodulatory effects of PT-112 from a phase 2 proof of concept study in patients (pts) with thymic epithelial tumors (TETs). <i>Journal of Clinical Oncology</i>. 2023;<b>41</b>(16_suppl):e20647-e20647. Bryce AH, <i>et al</i>. A phase 2 study of immunogenic cell death inducer PT-112 in patients with metastatic castration-resistant prostate cancer. <i>Journal of Clinical Oncology</i>. 2023;<b>41</b>(6_suppl):TPS292-TPS292. Yamazaki T, Ames TD, Galluzzi L, Potent induction of immunogenic cell death by PT-112. <i>Cancer Immunology Research</i>. 2019;<b>7</b>(2_Supplement):B199-B199. Soler-Agesta R, <i>et al</i>. PT-112 induces potent mitochondrial stress and immunogenic cell death in human prostate cancer cell lines. <i>Cancer Research</i>. 2022;<b>82</b>(12_Supplement):1115–1115. Soler-Agesta R, <i>et al</i>. PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies. <i>Cancers (Basel)</i>. 2022;<b>14</b>(16):3851. Soler-Agesta R, <i>et al</i>. Characterization of differential metabolic phenotypes and PT-112-induced mitochondrial effects in human prostate cancer cells. <i>European Journal of Cancer</i>. 2022;<b>174</b>(Supplement 1):S39. Yamazaki T, <i>et al</i>. Immunologically relevant effects of PT-112 on cancer cell mitochondria. <i>Journal for ImmunoTherapy of Cancer</i>. 2022;<b>10</b>(Suppl 2):A1162-A1162. Yamazaki T, <i>et al</i>. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. <i>Nature Immunology</i>. 2020;<b>21</b>(10):1160–1171. Kroemer G, <i>et al</i>. Immunogenic cell stress and death. <i>Nature Immunology</i>. 2022;<b>23</b>(4):487–500. Stern LJ, <i>et al</i>. Non-mutational neoantigens in disease. <i>Nat Immunol</i>. 2023; IN PRESS.","PeriodicalId":500964,"journal":{"name":"Regular and Young Investigator Award Abstracts","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1106 Molecular mechanisms of immunogenic cell death driven by PT-112\",\"authors\":\"Emma Guilbaud, Takahiro Yamazaki, Maria Congenie, Christina Yim, Tyler Ames, Lorenzo Galluzzi\",\"doi\":\"10.1136/jitc-2023-sitc2023.1106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Background</h3> PT-112 is a novel immunogenic small molecule<sup>1</sup> under Phase II clinical development for cancer therapy.<sup>2–8</sup> Besides mediating cytostatic and cytotoxic effects in numerous human and mouse cancer cells, PT-112 elicits various danger signals that are linked to immunogenic cell death (ICD) such as calreticulin exposure, as well as ATP and HMGB1 secretion.<sup>1 9–11</sup> Accordingly, mouse cancer cells succumbing to PT-112 <i>in vitro</i> efficiently protect immunocompetent, tumor-naïve mice from challenge with living cancer cells of the same type.<sup>1 9</sup> Moreover, PT-112 synergizes with PD-1 or PD-L1 blockade to control mouse tumors developing in immunologically competent hosts.<sup>1 9</sup> This work focuses on elucidating the underlying mechanisms of PT-112-induced ICD. <h3>Methods</h3> We harnessed a panel of human and mouse cell lines optionally engineered to lack specific genes involved in mitochondrial apoptosis (namely, <i>Bcl2, Bax</i> and <i>Bak1</i>) coupled with flow cytometry, immunoblotting, RT-PCR, immunofluorescence microscopy and clonogenic assays to determine the impact of reticular and mitochondrial events on the established ability of PT-112 to kill malignant cells in an immunogenic manner.<sup>1</sup> <h3>Results</h3> In line with previous findings,<sup>10–13</sup> PT-112 elicited eukaryotic translation initiation factor 2 subunit alpha (EIF2S1, best known as eIF2α) phosphorylation and mitochondrial dysfunction in malignant cells, a process that was accompanied by the release of interferogenic mitochondrial DNA (mtDNA)<sup>14</sup> in the cytoplasm of PT-112 treated cells, and was differentially affected by the deletion of <i>Bcl2</i>, <i>Bax</i>, <i>Bak1</i>, or <i>Bax</i> plus <i>Bak1</i>. Similarly, the lack of <i>Bcl2</i>, <i>Bax</i>, <i>Bak1</i>, or <i>Bax</i> plus <i>Bak1</i> had a differential impact on the ability of PT-112 to elicit early signs of mitochondrial apoptosis including reactive oxygen species (ROS) generation, mitochondrial transmembrane potential loss and ultimately plasma membrane permeabilization. <h3>Conclusions</h3> ER stress and mitochondrial dysfunction appear to underlie the ability of PT-112 to drive ICD, the integrated stress response, and viral mimicry. This is in line with the well-established connections between ER stress and cytoplasmic nucleic acid sensing, which are pristine mechanisms of antiviral defense in mammalian cells, with the capacity of dying cells to emit immunostimulatory signals.<sup>15</sup> Whether PT-112-driven stress also shifts the antigenic properties of cancer cells as a consequence of the accumulation of non-mutational neoantigens<sup>16</sup> remains to be determined. Despite these and other open questions, PT-112 stands out as a powerful immunotherapeutic agent with promising clinical activity in patients with a variety of tumors<sup>1</sup> under Phase II clinical development for cancer therapy.<sup>2–8</sup> <h3>References</h3> Yamazaki T, <i>et al.</i> PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models. <i>Oncoimmunology</i>. 2020;<b>9</b>(1):1721810 Karp DD, <i>et al</i>. Phase I study of PT-112, a novel pyrophosphate-platinum immunogenic cell death inducer, in advanced solid tumours. <i>EClinicalMedicine</i>. 2022;<b>49</b>:101430. Bryce AH, <i>et al</i>. A phase 1b study of novel immunogenic cell death inducer PT-112 plus PD-L1 inhibitor avelumab in metastatic castrate-resistant prostate cancer (mCRPC) patients. <i>Journal of Clinical Oncology</i>. 2021;<b>39</b>(15_suppl):e17025-e17025. doi:10.1200/JCO.2021.39.15_suppl.e17025 Kourelis T, <i>et al</i>. A Phase I Dose Escalation Study of PT-112 in Patients with Relapsed or Refractory Multiple Myeloma. <i>Blood</i>. 2020;<b>136</b>(Supplement 1):9–10. Karp DD, <i>et al</i>. Phase Ib dose escalation study of novel immunogenic cell death (ICD) inducer PT-112 plus PD-L1 inhibitor avelumab in solid tumours. <i>Annals of Oncology</i>. 2020;<b>31</b>:S708. Imbimbo M, <i>et al</i>. A phase IIa study of the novel immunogenic cell death (ICD) inducer PT-112 plus avelumab (‘PAVE’) in advanced non-small cell lung cancer (NSCLC) patients (pts). <i>Immuno-Oncology and Technology</i>. 2022;<b>16</b>:100237. Swift S, <i>et al</i>. Preliminary efficacy, safety, and immunomodulatory effects of PT-112 from a phase 2 proof of concept study in patients (pts) with thymic epithelial tumors (TETs). <i>Journal of Clinical Oncology</i>. 2023;<b>41</b>(16_suppl):e20647-e20647. Bryce AH, <i>et al</i>. A phase 2 study of immunogenic cell death inducer PT-112 in patients with metastatic castration-resistant prostate cancer. <i>Journal of Clinical Oncology</i>. 2023;<b>41</b>(6_suppl):TPS292-TPS292. Yamazaki T, Ames TD, Galluzzi L, Potent induction of immunogenic cell death by PT-112. <i>Cancer Immunology Research</i>. 2019;<b>7</b>(2_Supplement):B199-B199. Soler-Agesta R, <i>et al</i>. PT-112 induces potent mitochondrial stress and immunogenic cell death in human prostate cancer cell lines. <i>Cancer Research</i>. 2022;<b>82</b>(12_Supplement):1115–1115. Soler-Agesta R, <i>et al</i>. PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies. <i>Cancers (Basel)</i>. 2022;<b>14</b>(16):3851. Soler-Agesta R, <i>et al</i>. Characterization of differential metabolic phenotypes and PT-112-induced mitochondrial effects in human prostate cancer cells. <i>European Journal of Cancer</i>. 2022;<b>174</b>(Supplement 1):S39. Yamazaki T, <i>et al</i>. Immunologically relevant effects of PT-112 on cancer cell mitochondria. <i>Journal for ImmunoTherapy of Cancer</i>. 2022;<b>10</b>(Suppl 2):A1162-A1162. Yamazaki T, <i>et al</i>. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. <i>Nature Immunology</i>. 2020;<b>21</b>(10):1160–1171. Kroemer G, <i>et al</i>. Immunogenic cell stress and death. <i>Nature Immunology</i>. 2022;<b>23</b>(4):487–500. Stern LJ, <i>et al</i>. Non-mutational neoantigens in disease. <i>Nat Immunol</i>. 2023; IN PRESS.\",\"PeriodicalId\":500964,\"journal\":{\"name\":\"Regular and Young Investigator Award Abstracts\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Young Investigator Award Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2023-sitc2023.1106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Young Investigator Award Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jitc-2023-sitc2023.1106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PT-112是一种新的免疫原性小分子,目前正处于癌症治疗的II期临床开发阶段。2-8除了介导许多人类和小鼠癌细胞的细胞抑制和细胞毒性作用外,PT-112还引发与免疫原性细胞死亡(ICD)相关的各种危险信号,如钙网蛋白暴露,以及ATP和HMGB1的分泌。因此,在体外屈服于PT-112的小鼠癌细胞有效地保护免疫能力强的tumor-naïve小鼠免受同类型活癌细胞的攻击。此外,PT-112与PD-1或PD-L1抑制剂协同作用,在免疫能力强的宿主中控制小鼠肿瘤的发展。这项工作的重点是阐明pt -112诱导ICD的潜在机制。方法:我们利用一组人类和小鼠细胞系,选择性地工程化以缺乏与线粒体凋亡相关的特定基因(即Bcl2, Bax和Bak1),结合流式细胞术,免疫印迹,RT-PCR,免疫荧光显微镜和克隆测定来确定网状和线粒体事件对PT-112以免疫原性方式杀死恶性细胞的既定能力的影响结果与先前的研究结果一致,10-13 PT-112在恶性细胞中引发真核翻译起始因子2亚单位α (EIF2S1,即eIF2α)磷酸化和线粒体功能障碍,这一过程伴随着在PT-112处理的细胞细胞质中释放干扰源线粒体DNA (mtDNA)14,并受到Bcl2、Bax、Bak1或Bax + Bak1缺失的不同影响。同样,缺乏Bcl2、Bax、Bak1或Bax + Bak1对PT-112引发线粒体凋亡的早期迹象的能力有不同的影响,包括活性氧(ROS)的产生、线粒体跨膜电位损失和最终的质膜通透性。结论内质网应激和线粒体功能障碍可能是PT-112驱动ICD、综合应激反应和病毒模仿能力的基础。这与内质网应激与细胞质核酸感知之间建立的良好联系是一致的,内质网应激与细胞质核酸感知是哺乳动物细胞中抗病毒防御的原始机制,具有死亡细胞发射免疫刺激信号的能力pt -112驱动的应激是否也会由于非突变新抗原的积累而改变癌细胞的抗原特性仍有待确定。尽管存在这些和其他悬而未决的问题,PT-112作为一种强大的免疫治疗剂脱颖而出,在癌症治疗的II期临床开发中,对各种肿瘤患者具有良好的临床活性。Yamazaki,等。在小鼠肿瘤模型中,PT-112诱导免疫原性细胞死亡并与免疫检查点阻断剂协同作用。张建军,张建军,张建军,等。肿瘤免疫学杂志。2020;9(1):1721810一种新型焦磷酸盐-铂免疫原性细胞死亡诱导剂PT-112在晚期实体肿瘤中的I期研究。EClinicalMedicine。2022; 49:101430。Bryce AH,等。新型免疫原性细胞死亡诱导剂PT-112联合PD-L1抑制剂avelumab治疗转移性去势抵抗性前列腺癌(mCRPC)患者的1b期研究临床肿瘤杂志,2021;39(15 -增刊):e17025-e17025。doi: 10.1200 / JCO.2021.39.15_suppl。[17025]王晓东。PT-112在复发或难治性多发性骨髓瘤患者中的一期剂量递增研究血液。2020;136(增刊1):9-10。Karp DD等。新型免疫原性细胞死亡(ICD)诱导剂PT-112加PD-L1抑制剂avelumab治疗实体肿瘤的Ib期剂量递增研究中华肿瘤学杂志,2020;31:5708。Imbimbo M等。一项针对晚期非小细胞肺癌(NSCLC)患者的新型免疫原性细胞死亡(ICD)诱导剂PT-112加avelumab (PAVE)的IIa期研究。免疫肿瘤学与技术,2022;16:100237。Swift S,等。胸腺上皮肿瘤(TETs)患者的2期概念验证研究中PT-112的初步疗效、安全性和免疫调节作用。临床肿瘤学杂志,2023;41(16 -增刊):e20647-e20647。Bryce AH,等。免疫原性细胞死亡诱导剂PT-112在转移性去势抵抗性前列腺癌患者中的2期研究临床肿瘤杂志,2023;41(6_supl):TPS292-TPS292。杨建军,张建军,张建军,等。免疫原性细胞凋亡的研究进展。癌症免疫学研究,2019;7(2增刊):B199-B199。Soler-Agesta R,等。PT-112诱导人前列腺癌细胞系线粒体应激和免疫原性细胞死亡。中国癌症杂志,2022;32(增刊):1115-1115。Soler-Agesta R,等。靶向线粒体缺陷肿瘤细胞的PT-112诱导线粒体应激和免疫原性细胞死亡癌症(巴塞尔)。2022; 14(16): 3851。Soler-Agesta R,等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1106 Molecular mechanisms of immunogenic cell death driven by PT-112

Background

PT-112 is a novel immunogenic small molecule1 under Phase II clinical development for cancer therapy.2–8 Besides mediating cytostatic and cytotoxic effects in numerous human and mouse cancer cells, PT-112 elicits various danger signals that are linked to immunogenic cell death (ICD) such as calreticulin exposure, as well as ATP and HMGB1 secretion.1 9–11 Accordingly, mouse cancer cells succumbing to PT-112 in vitro efficiently protect immunocompetent, tumor-naïve mice from challenge with living cancer cells of the same type.1 9 Moreover, PT-112 synergizes with PD-1 or PD-L1 blockade to control mouse tumors developing in immunologically competent hosts.1 9 This work focuses on elucidating the underlying mechanisms of PT-112-induced ICD.

Methods

We harnessed a panel of human and mouse cell lines optionally engineered to lack specific genes involved in mitochondrial apoptosis (namely, Bcl2, Bax and Bak1) coupled with flow cytometry, immunoblotting, RT-PCR, immunofluorescence microscopy and clonogenic assays to determine the impact of reticular and mitochondrial events on the established ability of PT-112 to kill malignant cells in an immunogenic manner.1

Results

In line with previous findings,10–13 PT-112 elicited eukaryotic translation initiation factor 2 subunit alpha (EIF2S1, best known as eIF2α) phosphorylation and mitochondrial dysfunction in malignant cells, a process that was accompanied by the release of interferogenic mitochondrial DNA (mtDNA)14 in the cytoplasm of PT-112 treated cells, and was differentially affected by the deletion of Bcl2, Bax, Bak1, or Bax plus Bak1. Similarly, the lack of Bcl2, Bax, Bak1, or Bax plus Bak1 had a differential impact on the ability of PT-112 to elicit early signs of mitochondrial apoptosis including reactive oxygen species (ROS) generation, mitochondrial transmembrane potential loss and ultimately plasma membrane permeabilization.

Conclusions

ER stress and mitochondrial dysfunction appear to underlie the ability of PT-112 to drive ICD, the integrated stress response, and viral mimicry. This is in line with the well-established connections between ER stress and cytoplasmic nucleic acid sensing, which are pristine mechanisms of antiviral defense in mammalian cells, with the capacity of dying cells to emit immunostimulatory signals.15 Whether PT-112-driven stress also shifts the antigenic properties of cancer cells as a consequence of the accumulation of non-mutational neoantigens16 remains to be determined. Despite these and other open questions, PT-112 stands out as a powerful immunotherapeutic agent with promising clinical activity in patients with a variety of tumors1 under Phase II clinical development for cancer therapy.2–8

References

Yamazaki T, et al. PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models. Oncoimmunology. 2020;9(1):1721810 Karp DD, et al. Phase I study of PT-112, a novel pyrophosphate-platinum immunogenic cell death inducer, in advanced solid tumours. EClinicalMedicine. 2022;49:101430. Bryce AH, et al. A phase 1b study of novel immunogenic cell death inducer PT-112 plus PD-L1 inhibitor avelumab in metastatic castrate-resistant prostate cancer (mCRPC) patients. Journal of Clinical Oncology. 2021;39(15_suppl):e17025-e17025. doi:10.1200/JCO.2021.39.15_suppl.e17025 Kourelis T, et al. A Phase I Dose Escalation Study of PT-112 in Patients with Relapsed or Refractory Multiple Myeloma. Blood. 2020;136(Supplement 1):9–10. Karp DD, et al. Phase Ib dose escalation study of novel immunogenic cell death (ICD) inducer PT-112 plus PD-L1 inhibitor avelumab in solid tumours. Annals of Oncology. 2020;31:S708. Imbimbo M, et al. A phase IIa study of the novel immunogenic cell death (ICD) inducer PT-112 plus avelumab (‘PAVE’) in advanced non-small cell lung cancer (NSCLC) patients (pts). Immuno-Oncology and Technology. 2022;16:100237. Swift S, et al. Preliminary efficacy, safety, and immunomodulatory effects of PT-112 from a phase 2 proof of concept study in patients (pts) with thymic epithelial tumors (TETs). Journal of Clinical Oncology. 2023;41(16_suppl):e20647-e20647. Bryce AH, et al. A phase 2 study of immunogenic cell death inducer PT-112 in patients with metastatic castration-resistant prostate cancer. Journal of Clinical Oncology. 2023;41(6_suppl):TPS292-TPS292. Yamazaki T, Ames TD, Galluzzi L, Potent induction of immunogenic cell death by PT-112. Cancer Immunology Research. 2019;7(2_Supplement):B199-B199. Soler-Agesta R, et al. PT-112 induces potent mitochondrial stress and immunogenic cell death in human prostate cancer cell lines. Cancer Research. 2022;82(12_Supplement):1115–1115. Soler-Agesta R, et al. PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies. Cancers (Basel). 2022;14(16):3851. Soler-Agesta R, et al. Characterization of differential metabolic phenotypes and PT-112-induced mitochondrial effects in human prostate cancer cells. European Journal of Cancer. 2022;174(Supplement 1):S39. Yamazaki T, et al. Immunologically relevant effects of PT-112 on cancer cell mitochondria. Journal for ImmunoTherapy of Cancer. 2022;10(Suppl 2):A1162-A1162. Yamazaki T, et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nature Immunology. 2020;21(10):1160–1171. Kroemer G, et al. Immunogenic cell stress and death. Nature Immunology. 2022;23(4):487–500. Stern LJ, et al. Non-mutational neoantigens in disease. Nat Immunol. 2023; IN PRESS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信